搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非厄密Su-Schrieffer-Heeger链边缘态和趋肤效应依赖的电子输运特性

杨艳丽 段志磊 薛海斌

引用本文:
Citation:

非厄密Su-Schrieffer-Heeger链边缘态和趋肤效应依赖的电子输运特性

杨艳丽, 段志磊, 薛海斌

Edge states and skin effect dependent electron transport properties of a non-Hermitian Su-Schrieffer-Heeger chain

Yang Yan-Li, Duan Zhi-Lei, Xue Hai-Bin
PDF
导出引用
  • 在非互易Su-Schrieffer-Heeger (SSH) 链中,电子在胞内的跳跃振幅依赖于其跳跃方向,因而,该非厄密SSH链同时存在非平庸拓扑边缘态和非厄密趋肤效应. 相应地,如何探测非厄密SSH链的边缘态和趋肤效应成为非厄密物理学的一个重要课题. 本文研究了非厄密SSH链的非平庸拓扑边缘态和非厄密趋肤效应对其零能附近电子输运特性的依赖关系. 研究发现当电子在零能附近透射率峰的峰值远小于1时,非厄密SSH链具有左趋肤效应;反之,零能附近电子透射率峰的峰值远大于1时,非厄密SSH链则具有右趋肤效应. 特别是,在非平庸拓扑边缘态区域内,非厄密SSH链的趋肤效应被进一步增强. 另外,当非厄密SSH链与左、右导线之间的电子隧穿耦合强度由弱到强改变时,零能附近电子反射率谷的数目将从2个变为0,此特性可以用来探测非厄密SSH链具有非平庸拓扑边缘态. 上述结果在理论上为探测非厄密SSH链的非平庸拓扑边缘态和非厄密趋肤效应类型提供了一种可选择的方案.
    In the non-reciprocal Su-Schrieffer-Heeger (SSH) chain, the hopping amplitude of an electron in the intra-cell depends on its hopping direction. Consequently, the non-Hermitian SSH chain has both non-trivial topological edge states and non-Hermitian skin effect. However, how to detect the non-trivial topological edge states and non-Hermitian skin effect have become an important topics in non-Hermitian physics. In this paper, we have studied the dependences of the non-trivial topological edge states and the non-Hermitian skin effect of non-Hermitian SSH chain on their electron transport properties in the vicinity of the zero energy. It is demonstrated that when the peak value of the electron transmission probability in the vicinity of the zero energy is much smaller than 1, the non-Hermitian SSH chain has a left-non-Hermitian skin effect; while that in the vicinity of the zero energy is much larger than 1, the non-Hermitian SSH chain has a right-non-Hermitian skin effect. In particular, the skin effect of non-Hermitian SSH chain can be further enhanced in the region of non-trivial topological edge states. Moreover, with increasing the electron tunneling coupling amplitudes between the non-Hermitian SSH chain and the left and right leads from the weak coupling regime to the strong coupling one, the number of the dips of reflection probability in the vicinity of the zero energy will change from two to zero. Therefore, these results theoretically provide an alternative scheme for detecting non-trivial topological edge states and non-Hermitian skin effect types of the non-Hermitian SSH chain.
  • [1]

    Ashida Y, Gong Z, Ueda M 2020Adv. Phys. 69 249-435

    [2]

    Bergholtz E J, Budich J C, K Flore K 2021Rev. Mod. Phys. 93 015005

    [3]

    Zhang X, Zhang T, Lu M H, Chen Y F 2022Adv. Phys.-X 7 2109431

    [4]

    Li A, Wei H, Cotrufo M, Chen W, Mann S, Ni X, Xu B, Chen J, Wang J, Fan S, Qiu C W, Alù A, Chen L 2023Nat. Nanotechnol. 18 706-720

    [5]

    Banerjee A, Sarkar R, Dey S, Narayan A 2023J. Phys.:Condens. Matter 35 333001

    [6]

    Heiss W D 2012J. Phys. A:Math. Theor. 45 444016

    [7]

    Mandal I, Bergholtz E J, 2021Rev. Mod. Phys. 127 186601

    [8]

    Wang Q, Chong Y D 2023J. Opt. Soc. Am. B:Opt. Phys 40 1443-1466

    [9]

    Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M, Thomale R 2020Nat. Phys. 16 747-750

    [10]

    Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020Nat. Phys. 16 761-766

    [11]

    Ghataka A, Brandenbourgera M, van Wezela J, Coulaisa C 2020 Proc. Natl. Acad. Sci. U.S.A. 117 29561-29568

    [12]

    Lee T E 2016Phys. Rev. Lett. 116 133903

    [13]

    Jin L, Song Z 2019Phys. Rev. B 99 081103(R)

    [14]

    Wang X R, Guo C X, Kou S P 2020Phys. Rev. B 101 121116(R)

    [15]

    Wang X R, Guo C X, Du Q, Kou S P 2020Chin. Phys. Lett. 37 117303

    [16]

    Jezequel L, Delplace P 2023Phys. Rev. Lett. 130 066601

    [17]

    Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, Szameit A 2015Phys. Rev. Lett. 115 040402

    [18]

    Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017Nat. Mater. 16 433-438

    [19]

    Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R, Szameit A 2020Science 368 311-314

    [20]

    Liu S, Shao R, Ma S, Zhang L, You O, Wu H, Xiang Y J, Cui T J, Zhang S 2021Research 2021 5608038

    [21]

    Liang Q, Xie D, Dong Z, Li H, Li H, Gadway B, Yi W, Yan B 2022Phys. Rev. Lett. 129 070401

    [22]

    Zhou Q, Wu J, Pu Z, Lu J, Huang X, Deng W, Ke M, Liu Z, 2023Nat. Commun. 14 4569

    [23]

    Feng Y, Liu Z, Liu F, Yu J, Liang S, Li F, Zhang Y, Xiao M, Zhang Z 2023Phys. Rev. Lett. 131 013802

    [24]

    Zhang H, Chen T, Li L, Lee C H, Zhang X 2023Phys. Rev. B 107 085426

    [25]

    Lee C H, Thomale R 2019Phys. Rev. B 99 201103(R)

    [26]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020Phys. Rev. Lett. 124 086801

    [27]

    Lin Z, Lin Y, Yi W 2022Phys. Rev. B 106 063112

    [28]

    Zeng Q B 2022Phys. Rev. B 106 235411

    [29]

    Li J R, Luo C, Zhang L L, Zhang S F, Zhu P P, Gong W J 2023Phys. Rev. A 107 022222

    [30]

    Tang C, Yang H, Song L, Yao X, Yan P, Cao Y 2023Phys. Rev. B 108 035410

    [31]

    Kokhanchik P, Solnyshkov D, Malpuech G 2023Phys. Rev. B 108 L041403

    [32]

    Su W P, Schrieffer J R, Heeger A J 1980Phys. Rev. B 22 2099-2111

    [33]

    Li H, Yi W 2022Phys. Rev. A 106, 053311

    [34]

    Zhang L Y, Xue H B, Chen B, Chen J B, Xing L L 2020Acta Phys. Sin. 69 077301(in Chinese)[张蓝云,薛海斌,陈彬,陈建宾,邢丽丽2020物理学报69 077301]

    [35]

    Xue H B, Duan Z L, Chen B, Chen J B, Xing L L 2021Acta Phys. Sin. 70 087301(in Chinese)[薛海斌,段志磊,陈彬,陈建宾,邢丽丽2021物理学报70 087301]

    [36]

    Ye C Z, Zhang L Y, Xue H B 2022Chin. Phys. B 31 027304

    [37]

    Yao S, Wang Z 2018Phys. Rev. Lett. 121 086803

    [38]

    Jin L, Song Z 2019Phys. Rev. B 99 081103(R)

  • [1] 夏群, 邓文基. 体态和边缘态的电导峰. 物理学报, doi: 10.7498/aps.71.20212424
    [2] 薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽. 自旋轨道耦合Su-Schrieffer-Heeger原子链系统的电子输运特性. 物理学报, doi: 10.7498/aps.70.20201742
    [3] 张蓝云, 薛海斌, 陈彬, 陈建宾, 邢丽丽. 量子点-Su-Schrieffer-Heeger原子链系统的电子输运特性. 物理学报, doi: 10.7498/aps.69.20191871
    [4] 卢曼昕, 邓文基. 一维二元复式晶格的拓扑不变量与边缘态. 物理学报, doi: 10.7498/aps.68.20190214
    [5] 许楠, 张岩. 三聚化非厄密晶格中具有趋肤效应的拓扑边缘态. 物理学报, doi: 10.7498/aps.68.20190112
    [6] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, doi: 10.7498/aps.64.097302
    [7] 魏政鸿, 云峰, 丁文, 黄亚平, 王宏, 李强, 张烨, 郭茂峰, 刘硕, 吴红斌. 低接触电阻率Ni/Ag/Ti/Au反射镜电极的研究. 物理学报, doi: 10.7498/aps.64.127304
    [8] 黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕. Ni/Ag/Ti/Au与p-GaN的欧姆接触性能及光反射率. 物理学报, doi: 10.7498/aps.63.127302
    [9] 周仁来, 鞠有伦, 杨超, 王巍, 王月珠. 一种对双包层大芯径光纤光栅反射率和纤芯折射率调制估算的方法. 物理学报, doi: 10.7498/aps.61.244205
    [10] 王振德, 刘念华. 正负折射率材料组成的半无限一维光子晶体的反射率. 物理学报, doi: 10.7498/aps.58.559
    [11] 杜晓宇, 郑婉华, 任 刚, 王 科, 邢名欣, 陈良惠. 二维光子晶体耦合腔阵列的慢波效应研究. 物理学报, doi: 10.7498/aps.57.571
    [12] 刘世元, 顾华勇, 张传维, 沈宏伟. 基于修正等效介质理论的微纳深沟槽结构反射率快速算法研究. 物理学报, doi: 10.7498/aps.57.5996
    [13] 杜 娟, 张淳民, 赵葆常, 孙 尧. 稳态大视场偏振干涉成像光谱仪中视场补偿型Savart偏光镜透射率研究. 物理学报, doi: 10.7498/aps.57.6311
    [14] 郭少锋, 林文雄, 陆启生, 陈 燧, 林宗志, 邓少永, 朱永祥. 熔融石英玻璃受激布里渊散射效应实验研究. 物理学报, doi: 10.7498/aps.56.2218
    [15] 徐 敏, 张月蘅, 沈文忠. 半导体远红外反射镜中反射率和相位研究. 物理学报, doi: 10.7498/aps.56.2415
    [16] 冯素娟, 尚 亮, 毛庆和. 利用偏振控制器连续调节光纤环镜的反射率. 物理学报, doi: 10.7498/aps.56.4677
    [17] 王晓慧, 吕志伟, 林殿阳, 王 超, 汤秀章, 龚 坤, 单玉生. 宽带KrF激光抽运的受激布里渊散射反射率研究. 物理学报, doi: 10.7498/aps.55.1224
    [18] 彭志红, 张淳民, 赵葆常, 李英才, 吴福全. 新型偏振干涉成像光谱仪中Savart偏光镜透射率的研究. 物理学报, doi: 10.7498/aps.55.6374
    [19] 孙可煦, 易荣清, 杨国洪, 江少恩, 崔延莉, 刘慎业, 丁永坤, 崔明启, 朱佩平, 赵屹东, 朱杰, 郑雷, 张景和. 软x射线平面镜不同掠射角下的反射率标定. 物理学报, doi: 10.7498/aps.53.1099
    [20] 吕志伟, 王晓慧, 林殿阳, 王 超, 赵晓彦, 汤秀章, 张海峰, 单玉生. KrF激光受激布里渊散射反射率稳定性的研究. 物理学报, doi: 10.7498/aps.52.1184
计量
  • 文章访问数:  277
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 上网日期:  2023-09-18

/

返回文章
返回