搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维非互易声学晶体的非厄米趋肤态操控

黄泽鑫 圣宗强 程乐乐 曹三祝 陈华俊 吴宏伟

引用本文:
Citation:

一维非互易声学晶体的非厄米趋肤态操控

黄泽鑫, 圣宗强, 程乐乐, 曹三祝, 陈华俊, 吴宏伟

Steering non-Hermitian skin states by engineering interface in 1D nonreciprocal acoustic crystal

Huang Ze-Xin, Sheng Zong-Qiang, Cheng Le-Le, Cao San-Zhu, Chen Hua-Jun, Wu Hong-Wei
PDF
导出引用
  • 近年来,基于非厄米拓扑理论,人们通过调制声学晶体中的非互易耦合,揭示了体态向界面塌陷的趋肤效应.在这项研究中,我们实验设计了具有不同绕组数域之间的拓扑趋肤界面,以操纵能量聚焦到非厄米一维声腔链的中间或两端.首先,我们通过电声耦合的方法实现了两个声学腔之间的非互易耦合,并研究其特性.其次,我们将非互易耦合腔扩展成链状,通过调制非互易电-声耦合来构建趋肤界面的位置.实验结果表明,对于不同的非互易耦合分布,声音可以集中在中间界面或两端界面,并且通过改变非互易耦合方向,可以将趋肤界面从中间切换到两端.我们的研究结果为设计控制声音传播的先进拓扑声学装置提供了一个新平台.
    Topological insulators, which possess robust topologically protected properties for manipulating the wave propagation against the disorder and defects, have grown into a large research field in photonic and phononic crystals. However, the conventional topological band theory is used to describe a closed photonic/phononic crystal that is assumed to be Hermitian system. In fact, practical physical systems often couple with outside environment, and induce non-Hermitian Hamiltonian with complex eigenvalues. Recently, many novel topological properties have been induced by the interacting between non-Hermitian and topological phases, a prominent example is non-Hermitian skin effect that all eigenstates are localized to the boundary in open system, which different from the conventional topological edge states. The unique physical phenomenon has stimulated various applications, such as wave funneling, enhanced sensing, and topological lasing. In this work, we describe the non-Hermitian skin effect using winding numbers. The sign of the winding number determines the rotation direction of the loops in the complex frequency plane, which the sign can be controlled by the nonreciprocal coupling direction. In this context, we designed different topological skin interface between different domains with opposite winding numbers to manipulate the energy focusing to middle or two-end of non-Hermitian 1D acoustic cavity chain. In experiment, we used an electroacoustic coupling method, employing a unidirectional coupler composed of microphones, speakers, phase shifters, and amplifiers, to introduce positive and negative non-reciprocal couplings between the two acoustic cavities and studied the characteristics of these non-reciprocal couplings. Then, the non-reciprocal coupling cavities were extended into a chain structure, and the magnitude and sign of the non-reciprocal couplings were flexibly controlled using phase shifters and amplifiers. Through this method, we successfully constructed interfaces between different winding numbers, achieving a one-dimensional non-Hermitian skin effect at various interfaces. The experimental results indicate that the sound can be focused at middle interface or two-end interfaces for different nonreciprocal coupling distributions, and the skin interface can also be switched from middle to two-end by exchanging the nonreciprocal coupling direction of the domains. Our research results offer greater flexibility in the design of acoustic devices and may provide a new platform for exploring advanced topological acoustic systems for controlling sound propagation.
  • [1]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369

    [2]

    Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, Zhu X F 2016 Nat. Commun. 7 13368

    [3]

    Jia D, Ge Y, Yuan S Q,Sun H X 2019 Acta Phys. Sin. 68 224301 (in Chinese) [贾鼎, 葛勇, 袁寿其, 孙宏祥 2019 物理学报 68 224301]

    [4]

    Cheng Q Q, Pan Y M, Wang H Q, Zhang C S, Yu D, Gover A, Zhang H J, Li T, Zhou L, Zhu S N 2019 Phys. Rev. Lett. 122 173901

    [5]

    Geng Z G, Peng Y G, Shen Y X, Zhao D G, Zhu X F 2019 Acta Phys. Sin. 68 227802 (in Chinese) [耿治国, 彭玉桂, 沈亚西, 赵德刚,祝雪丰 2019 物理学报68 227802]

    [6]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901

    [7]

    Wang Q H,Li F, Huang X Q, Lu J Y, Liu Z Y 2017 Acta Phys. Sin. 66 204501 (in Chinese) [王青海, 李锋, 黄学勤, 陆久阳, 刘正猷 2017 物理学报 66 204501]

    [8]

    Yang Z J, Gao F, Shi X H, Lin X, Gao Z, Chong Y D, Zhang B L 2015 Phys. Rev. Lett. 114 114301

    [9]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124

    [10]

    Liu H, Xie B Y, Wang H N, Liu W W, Li Z C, Cheng H, Tian J G, Liu Z Y 2023 Phys. Rev. B 108 L161410

    [11]

    Shandarova K, Rüter C E, Kip D, Makris K G, Christodoulides D N, Peleg O, Segev M 2009 Phys. Rev. Lett. 102 123905

    [12]

    Iwanow R, May-Arrioja D A, Christodoulides D N, Stegeman G I, Min Y, Sohler W 2005 Phys. Rev. Lett. 95 053902

    [13]

    Shen Y X, Peng Y G, Zhao D G, Chen X C, Zhu J, Zhu X F 2019 Phys. Rev. Lett. 122 094501

    [14]

    Shen Y X, Zeng L S, Geng Z G, Zhao D G, Peng Y G, Zhu X F 2020 Phys. Rev. Appl. 14 014043

    [15]

    Shen Y X, Zeng L S, Geng Z G, Zhao D G, Peng Y G, Zhu J, Zhu X F 2021 Sci. China Phys. Mech. 64 244302

    [16]

    Tang S, Wu J L, Lü C, Yao J B, Pei Y B, Jiang Y Y 2023 Appl. Phys. Lett. 122 212201

    [17]

    Tang S, Wu J L, Lü C, Wang X S, Song J, Jiang Y Y 2022 Phys. Rev. B 105 104107

    [18]

    Tang S, Wu J L, Lü C, Yao J B, Wang X S, Song J, Jiang Y Y 2023 New J. Phys. 25 033032

    [19]

    Crespi A, Pepe F V, Facchi P, Sciarrino F, Mataloni P, Nakazato H, Pascazio S, Osellame R 2019 Phys. Rev. Lett. 122 130401

    [20]

    Pinkse P W H, Fischer T, Maunz P, Rempe G 2000 Nature 404 365

    [21]

    Schäfer F, Herrera I, Cherukattil S, Lovecchio C, Cataliotti F S, Caruso F, Smerzi A 2014 Nat. Commun. 5 3194

    [22]

    Raimond J M, Sayrin C, Gleyzes S, Dotsenko I, Brune M, Haroche S, Facchi P, Pascazio S 2010 Phys. Rev. Lett. 105 213601

    [23]

    Barontini G, Hohmann L, Haas F, Estève J, Reichel J 2015 Science 349 1317

    [24]

    Weidemann S, Kremer1 M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R, Szameit A 2020 Science 368 311

    [25]

    Budich J C, Bergholtz E J 2020 Phys. Rev. Lett. 125 180403

    [26]

    McDonald A, Clerk A A 2020 Nat. Commun. 11 5382

    [27]

    Longhi S 2018 Ann. Phys. 530 1800023

    [28]

    Zhu B f, Wang Q, Leykam D, Xue H, Wang Q J, Chong Y D 2022 Phys. Rev. Lett. 129 013903

    [29]

    Hatano N, Nelson D R 1996 Phys. Rev. Lett. 77 570

    [30]

    Hatano N, Nelson D R 1998 Phys. Rev. B 58 8384

    [31]

    Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761

    [32]

    Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M, Thomale R 2020 Nat. Phys. 16 747

    [33]

    Zhang Q C, Li Y T, Sun H F, Liu X, Zhao L K, Feng X L, Fan X Y, Qiu C Y 2023 Phys. Rev. Lett. 130 017201

    [34]

    Zhang L, Yang Y H, Ge Y, Guan Y J, Chen Q L, Yan Q H, Chen F J, Xi R, Li Y Z, Jia D, Yuan S Q, Sun H X, Chen H S, Zhang B L 2021 Nat. Commun. 12 6297

    [35]

    Gu Z, Gao H, Xue H, Li J, Su Z, Zhu J 2022 Nat. Commun. 13 7668

    [36]

    Zhang K, Yang Z, Fang C 2022 Nat. Commun. 13 2496

    [37]

    Zhang K, Fang C, Yang Z 2023 Phys. Rev. Lett. 131 036402

    [38]

    Lee C H, Li L, Gong J 2019 Phys. Rev. Lett. 123 016805

    [39]

    Li L, Lee C H, Gong J 2020 Phys. Rev. Lett. 124 250402

    [40]

    Zhu W, Gong J 2022 Phys. Rev. B 106 035425

  • [1] 杨艳丽, 段志磊, 薛海斌. 非厄米Su-Schrieffer-Heeger链边缘态和趋肤效应依赖的电子输运特性. 物理学报, doi: 10.7498/aps.72.20231286
    [2] 刘佳琳, 庞婷方, 杨孝森, 王正岭. 无序非厄米Su-Schrieffer-Heeger中的趋肤效应. 物理学报, doi: 10.7498/aps.71.20221151
    [3] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态. 物理学报, doi: 10.7498/aps.71.20221292
    [4] 陈舒越, 蒋闯, 柯少林, 王兵, 陆培祥. 基于Aharonov-Bohm笼的非厄米趋肤效应抑制现象. 物理学报, doi: 10.7498/aps.71.20220978
    [5] 邓天舒. 畴壁系统中的非厄米趋肤效应. 物理学报, doi: 10.7498/aps.71.20221087
    [6] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态. 物理学报, doi: 10.7498/aps.71.20211642
    [7] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态. 物理学报, doi: 10.7498/aps.70.20211642
    [8] 郑周甫, 尹剑飞, 温激鸿, 郁殿龙. 基于声子晶体板的弹性波拓扑保护边界态. 物理学报, doi: 10.7498/aps.69.20200542
    [9] 孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, doi: 10.7498/aps.68.20190260
    [10] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态. 物理学报, doi: 10.7498/aps.66.227802
    [11] 王青海, 李锋, 黄学勤, 陆久阳, 刘正猷. 一维颗粒声子晶体的拓扑相变及可调界面态. 物理学报, doi: 10.7498/aps.66.224502
    [12] 侯丽娜, 侯志林, 傅秀军. 局域共振型声子晶体中的缺陷态研究. 物理学报, doi: 10.7498/aps.63.034305
    [13] 高东宝, 曾新吾, 周泽民, 田章福. 一维亥姆霍兹共振腔声子晶体中缺陷模式的实验研究. 物理学报, doi: 10.7498/aps.62.094304
    [14] 刘启能, 刘沁. 固-固无限周期声子晶体中SH波全反射隧穿的谐振理论. 物理学报, doi: 10.7498/aps.62.044301
    [15] 刘漾, 巩华荣, 魏彦玉, 宫玉彬, 王文祥, 廖复疆. 有效抑制光子晶体加载矩形谐振腔中模式竞争的方法. 物理学报, doi: 10.7498/aps.58.7845
    [16] 赵 芳, 苑立波. 二维声子晶体同质位错结缺陷态特性. 物理学报, doi: 10.7498/aps.55.517
    [17] 李晓春, 易秀英, 肖清武, 梁宏宇. 三组元声子晶体中的缺陷态. 物理学报, doi: 10.7498/aps.55.2300
    [18] 罗 雄, 廖 成, 孟凡宝, 张运俭. 同轴虚阴极谐振效应研究. 物理学报, doi: 10.7498/aps.55.5774
    [19] 汤晓燕, 张义门, 张玉明, 郜锦侠. 界面态电荷对n沟6H-SiC MOSFET场效应迁移率的影响. 物理学报, doi: 10.7498/aps.52.830
    [20] 任红霞, 郝 跃, 许冬岗. N型槽栅金属-氧化物-半导体场效应晶体管抗热载流子效应的研究. 物理学报, doi: 10.7498/aps.49.1241
计量
  • 文章访问数:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-18

/

返回文章
返回