搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维颗粒声子晶体的拓扑相变及可调界面态

王青海 李锋 黄学勤 陆久阳 刘正猷

引用本文:
Citation:

一维颗粒声子晶体的拓扑相变及可调界面态

王青海, 李锋, 黄学勤, 陆久阳, 刘正猷

The topological phase transition and the tunable interface states in granular crystal

Wang Qing-Hai, Li Feng, Huang Xue-Qin, Lu Jiu-Yang, Liu Zheng-You
PDF
导出引用
  • 基于Su-Schrieffer-Heeger模型,构造了一种一维非线性声子晶体,通过调控外加在声子晶体上的预紧力,可调控声子晶体的拓扑态,从而实现拓扑相变.利用这一效应,把该非线性声子晶体与另一线性声子晶体形成异质结构,可以实现一种新型声学开关:通过调节预紧力即调控非线性声子晶体的拓扑相,可以实现异质结构中界面态从无到有的转变,从而实现了开关效应.利用该效应可望开发新型声学器件,如可调谐振器、可调滤波器、可调隔振器等.
    Topological phase is a new degree of freedom to describe the state of matter in condensed matter physics. One could predict the existence of the interface state between two topological different phononic crystals. The band structures of phononic crystal depend on the characteristics of their composite and their combination, such as geometry, filling fraction, and stiffness. However, after the phononic crystal is fabricated out, it is relatively difficult to tune their band structure and its topology. In order to broaden the application scope of phononic crystals, different kinds of tunable phononic crystals have been proposed. One method to achieve this tunability is to introduce nonlinearity into the phononic crystals. Granular crystals is one type of tunable nonlinear material, whose nonlinearity stems from nonlinear Hertzian contact. By changing the static precompression, the dispersion of granular crystals can be tuned. In this paper, by combining topology with nonlinear we create a new type of interface state switch without changing the experimental setup. Based on the Su-Schrieffer-Heeger (SSH) model–an example of a one dimensional (1D) topological insulator, we present a 1D nonlinear granular crystal, to realize the topological transition by precompression. First, we construct a 1D mechanical structure, which is made up of nonlinear granular crystal and linear phononic crystal. The 1D nonlinear granular crystal is simplified as a “mass-spring” model with tunable elastic constant and invariable elastic constant. By calculating the band topology–the Zak phase, we found that the Zak phase of the two bands can switch from π to 0. There exist a critical precompression F0, when F F0 the Zak phase of the band is π, when F > F0 the Zak phase is 0. The granular crystal vary from nontrivial bandgap to trivial one as precompression gradually increase. This effect enables us to design interface state switch at the interface between granular crystals with trivial and nontrivial band gap. Furthermore, when F F0, we find that the localization of interface state decreases as the applied precompression increases. Thus, we investigate existence of the interface state under different precompression and found that the interface state can be controlled freely. We anticipate these results to enable the creation of novel tunable acoustic devices.
      通信作者: 刘正猷, zyliu@whu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2015CB755500)、国家自然科学基金(批准号:61271139,11572318,11604102,11374233)、广东省引进创新创业团队项目(批准号:2016ZT06C594)和博士后创新人才支持计划(批准号:BX201600054)资助的课题.
      Corresponding author: Liu Zheng-You, zyliu@whu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB755500), the National Natural Science Foundation of China (Grant Nos. 61271139, 11572318, 11604102, 11374233), Guangdong Innovative and Entrepreneurial Research Team Program, China (Grant No. 2016ZT06C594), and the National Postdoctoral Program for Innovative Talents, China (Grant No. BX201600054).
    [1]

    Ma G C, Sheng P 2016 Sci. Adv 2 e1501595

    [2]

    Yang S X, Page J H, Liu Z Y, Cowan M L, Chan C T, Sheng P 2004 Phys. Rev. Lett. 93 024301

    [3]

    Wu F G, Liu Z Y, Liu Y Y 2002 Phys. Rev. E 66 046628

    [4]

    Wu L Y, Yang W P, Chen L W 2008 Phys. Lett. A 372 2701

    [5]

    Matar O B, Robillard J F, Vasseur J O, Hennion A C H, Deymier P A, Pernod P, Preobrazhensky V 2012 J. Appl. Phys. 111 054901

    [6]

    Boechler N, Theocharis G, Daraio C 2011 Nat. Mater. 10 665

    [7]

    Porter M A, Kevrekidis P G, Daraio C 2015 Phys. Today 68 44

    [8]

    Li F, Ngo D, Yang J Y, Daraio C 2012 Appl. Phys. Lett.101 171903

    [9]

    Garcia M S, Lydon J, Daraio C 2016 Phys. Rev. E 93 010901

    [10]

    Sinev I S, Mukhin I S, Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Samuseva A K, Kivshar Y S 2015 Nanoscale 7 11904

    [11]

    Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017 Nat. Mater. 10 4811

    [12]

    Xiao M, Ma G C, Yang Z Y, Sheng P, Zhang Z Q, Chan C T 2015 Nat. Phys. 11 240

    [13]

    Xiao Y X, Ma G C, Zhang Z Q, Chan C T 2017 Phys. Rev. Lett. 118 166803

    [14]

    Kane C L, Lubensky T C 2014 Nat. Phys. 10 2835

    [15]

    Theocharis G, Boechler N, Daraio C 2013 Nonlinear Phononic Periodic Structures and Granular Crystals (Berlin Heidelberg: Springer) p217

    [16]

    Huang K, Han R Q 1988 Solid State Physics (Beijing: Higher Education Press) p93 (in Chinese) [黄昆 著, 韩汝琦 改编 1988 固体物理学 (北京: 高等教育出版社) 第 93 页]

    [17]

    Berry M V 1984 Proc. R. Soc. Lond. A 392 45

    [18]

    Zak J 1989 Phys. Rev. Lett. 62 2747

    [19]

    Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017

    [20]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [21]

    Chen X, Gu Z C, Liu Z X, Wen X G 2013 Phys. Rev. B 87 155114

  • [1]

    Ma G C, Sheng P 2016 Sci. Adv 2 e1501595

    [2]

    Yang S X, Page J H, Liu Z Y, Cowan M L, Chan C T, Sheng P 2004 Phys. Rev. Lett. 93 024301

    [3]

    Wu F G, Liu Z Y, Liu Y Y 2002 Phys. Rev. E 66 046628

    [4]

    Wu L Y, Yang W P, Chen L W 2008 Phys. Lett. A 372 2701

    [5]

    Matar O B, Robillard J F, Vasseur J O, Hennion A C H, Deymier P A, Pernod P, Preobrazhensky V 2012 J. Appl. Phys. 111 054901

    [6]

    Boechler N, Theocharis G, Daraio C 2011 Nat. Mater. 10 665

    [7]

    Porter M A, Kevrekidis P G, Daraio C 2015 Phys. Today 68 44

    [8]

    Li F, Ngo D, Yang J Y, Daraio C 2012 Appl. Phys. Lett.101 171903

    [9]

    Garcia M S, Lydon J, Daraio C 2016 Phys. Rev. E 93 010901

    [10]

    Sinev I S, Mukhin I S, Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Samuseva A K, Kivshar Y S 2015 Nanoscale 7 11904

    [11]

    Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017 Nat. Mater. 10 4811

    [12]

    Xiao M, Ma G C, Yang Z Y, Sheng P, Zhang Z Q, Chan C T 2015 Nat. Phys. 11 240

    [13]

    Xiao Y X, Ma G C, Zhang Z Q, Chan C T 2017 Phys. Rev. Lett. 118 166803

    [14]

    Kane C L, Lubensky T C 2014 Nat. Phys. 10 2835

    [15]

    Theocharis G, Boechler N, Daraio C 2013 Nonlinear Phononic Periodic Structures and Granular Crystals (Berlin Heidelberg: Springer) p217

    [16]

    Huang K, Han R Q 1988 Solid State Physics (Beijing: Higher Education Press) p93 (in Chinese) [黄昆 著, 韩汝琦 改编 1988 固体物理学 (北京: 高等教育出版社) 第 93 页]

    [17]

    Berry M V 1984 Proc. R. Soc. Lond. A 392 45

    [18]

    Zak J 1989 Phys. Rev. Lett. 62 2747

    [19]

    Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017

    [20]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [21]

    Chen X, Gu Z C, Liu Z X, Wen X G 2013 Phys. Rev. B 87 155114

  • [1] 胡晨阳, 梁家洛, 郑日翌, 陆久阳, 邓伟胤, 黄学勤, 刘正猷. 一维合成维度水基声子晶体. 物理学报, 2024, 73(10): 104301. doi: 10.7498/aps.73.20240298
    [2] 黄泽鑫, 圣宗强, 程乐乐, 曹三祝, 陈华俊, 吴宏伟. 一维非互易声学晶体的非厄米趋肤态操控. 物理学报, 2024, 73(21): 214301. doi: 10.7498/aps.73.20241087
    [3] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [4] 代美芹, 张清悦, 赵秋玲, 王茂榕, 王霞. 一维反转对称光子结构中界面态的可调控特性. 物理学报, 2022, 71(20): 204205. doi: 10.7498/aps.71.20220383
    [5] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态. 物理学报, 2022, 71(4): 044301. doi: 10.7498/aps.71.20211642
    [6] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211254
    [7] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211642
    [8] 董磊, 杨剑群, 甄兆丰, 李兴冀. 预加温处理对双极晶体管过剩基极电流理想因子的影响机制. 物理学报, 2020, 69(1): 018502. doi: 10.7498/aps.69.20191151
    [9] 裴东亮, 杨洮, 陈猛, 刘宇, 徐文帅, 张满弓, 姜恒, 王育人. 基于复合蜂窝结构的宽带周期与非周期声拓扑绝缘体. 物理学报, 2020, 69(2): 024302. doi: 10.7498/aps.69.20191454
    [10] 郑周甫, 尹剑飞, 温激鸿, 郁殿龙. 基于声子晶体板的弹性波拓扑保护边界态. 物理学报, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [11] 王彦兰, 李妍. 二维介电光子晶体中的赝自旋态与拓扑相变. 物理学报, 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [12] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [13] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [14] 郝宁, 胡江平. 铁基超导中拓扑量子态研究进展. 物理学报, 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [15] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [16] 沈清玮, 徐林, 蒋建华. 圆环结构磁光光子晶体中的拓扑相变. 物理学报, 2017, 66(22): 224102. doi: 10.7498/aps.66.224102
    [17] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态. 物理学报, 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [18] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变. 物理学报, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [19] 赵启凤, 庄奕琪, 包军林, 胡为. 基于1/f噪声的NPN晶体管辐照感生电荷的定量分离. 物理学报, 2015, 64(13): 136104. doi: 10.7498/aps.64.136104
    [20] 艾 芬, 白 洋, 徐 芳, 乔利杰, 周 济. 基于铁氧体基板的开口谐振环的可调微波左手特性研究. 物理学报, 2008, 57(7): 4189-4194. doi: 10.7498/aps.57.4189
计量
  • 文章访问数:  8491
  • PDF下载量:  534
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-18
  • 修回日期:  2017-10-24
  • 刊出日期:  2017-11-05

/

返回文章
返回