搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维反转对称光子结构中界面态的可调控特性

代美芹 张清悦 赵秋玲 王茂榕 王霞

引用本文:
Citation:

一维反转对称光子结构中界面态的可调控特性

代美芹, 张清悦, 赵秋玲, 王茂榕, 王霞

Controllable characteristics of interface states in one-dimensional inverted symmetric photonic structures

Dai Mei-Qin, Zhang Qing-Yue, Zhao Qiu-Ling, Wang Mao-Rong, Wang Xia
PDF
HTML
导出引用
  • 利用传输矩阵法, 计算研究了一维反转对称光子结构通过不同的组合方式产生界面态的可调控特性, 并通过电子束蒸镀技术制备样品进行了实验验证. 由两种材料构成的反转对称层状光子结构, 根据元胞的反转对称中心不同分别对应PCI和PCII两种结构. 研究结果表明, 对于由PCI和PCII构成的组合结构, 在满足两个结构的表面阻抗虚部之和等于零的特征频率处存在一个界面态, 该界面态频率与结构元胞数无关; 若在此基础上再增加一个PCI, 构成PCI + PCII + PCI组合结构, 则在同一个带隙中会产生两个界面态; 改变组合结构中每部分或者其中一部分结构的元胞数可以对两个界面态频率实现调控, 实验研究结果充分表明调控的可行性, 这为设计满足不同应用需求的窄带滤波器、多通道滤波器等提供了更灵活的思路.
    Using the transfer matrix method, the tunable characteristics of the interface state generated by one-dimensional photonic structure with inversion symmetry are studied, and the samples are prepared by electron beam evaporation technology for experimental verification. According to the different inversion symmetry centers of unit cell, the inverted symmetric layered photonic structures are divided into two types i.e. PCI and PCII. The calculation results show that for the combined structure composed of PCI and PCII, there is an interface state at a characteristic frequency where the sum of the imaginary parts of the surface impedance of PCI and PCII is equal to zero, and this frequency of the interface state is independent of the number of unit cells. On this basis, if a PCI structure is added to form PCI + PCII + PCI photonic structure, two interface states will be generated in the same band gap, and changing the unit cell number in each or part of of individual PCI and PCII structures, the frequencies of two interface states can be regulated. The experimental results show that the regulation of interface state by controlling unit cell number is feasible, which provides a more flexible idea for designing the extremely narrow-band filters and multi-channel filters to meet different application requirements.
      通信作者: 赵秋玲, sdqlzhao@163.com ; 王霞, phwangxia@163.com
    • 基金项目: 国家自然科学基金(批准号: 11874232, 61905127, 12174211)资助的课题.
      Corresponding author: Zhao Qiu-Ling, sdqlzhao@163.com ; Wang Xia, phwangxia@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874232, 61905127, 12174211)
    [1]

    段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英 2019 物理学报 68 144201Google Scholar

    Duan X K, Ren J J, Hao H, Zhang Q, Gong Q H, Gu Y 2019 Acta Phys. Sin. 68 144201Google Scholar

    [2]

    李林, 程亚, 祝世宁 2021 物理 50 308Google Scholar

    Li L, Cheng Y, Zhu S N 2021 Physics 50 308Google Scholar

    [3]

    Zhang Y B, Liu H, Cheng H, Tian J G, Chen S Q 2020 Opto-Electron. Adv. 3 200002Google Scholar

    [4]

    朱韵至 2020 博士学位论文 (南京: 南京大学)

    Zhu Y Z 2020 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [5]

    Deng Z L, Tu Q A, Wang Y J, Wang Z Q, Shi T, Feng Z W, Qiao X C, Wang G P, Xiao S M, Li X P 2021 Adv. Mater. 33 2103472Google Scholar

    [6]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [7]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [8]

    顾国昌, 李宏强, 陈洪涛, 陈鸿, 吴翔 2000 光学学报 20 728

    Gu G C, Li H Q, Chen H T, Chen H, Wu X 2000 Acta Opt. Sin. 20 728

    [9]

    杜桂强, 刘念华 2004 物理学报 53 1095Google Scholar

    Du G Q, Liu N H 2004 Acta Phys. Sin. 53 1095Google Scholar

    [10]

    Biswal A, Kumar R, Nayak C, Dhanalakshmi S 2021 Optik 234 166597Google Scholar

    [11]

    Liu X J, Ren M L, Pan Q, Zhang X R, Ma J, Wu X Y 2020 Physica E 126 114415Google Scholar

    [12]

    Taya S A, Doghmosh N, Upadhyay A 2021 Opt. Quantum Electron. 53 35Google Scholar

    [13]

    张正仁, 隆正文, 袁玉群, 刁心峰 2010 物理学报 59 587Google Scholar

    Zhang Z R, Long Z W, Yuan Y Q, Diao X F 2010 Acta Phys. Sin. 59 587Google Scholar

    [14]

    Xu X F, Huang J Y, Zhang H, Guo X Y, Mu S S, Liu Y Q, Zhai N 2021 Opt. Commun. 498 127262Google Scholar

    [15]

    Tan H Y, Zhou M J, Zhuge L J, Wu X M 2021 J. Phys. D: Appl. Phys. 54 085106Google Scholar

    [16]

    Kalozoumis P A, Theocharis G, Achilleos V, Félix S, Richoux O, Pagneux V 2018 Phys. Rev. A 98 023838Google Scholar

    [17]

    Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017Google Scholar

    [18]

    高慧芬, 周小芳, 黄学勤 2022 物理学报 71 044301Google Scholar

    Gao H F, Zhou X F, Huang X Q 2022 Acta Phys. Sin. 71 044301Google Scholar

    [19]

    Liu Q, Sun J D, Sun Y D, Ren Z H, Liu C, Lv J W, Wang F M, Wang L Y, Liu W, Sun T, Chu P K 2020 Opt. Mater. 102 109800Google Scholar

    [20]

    Feng S, Ren C, Wang W Z, Wang Y Q 2013 Opt. Commun. 289 144Google Scholar

    [21]

    刘博文, 胡明列, 宋有建, 柴路, 王清月 2008 中国激光 03 479Google Scholar

    Liu B W, Hu M L, Song Y J, Chai L, Wang Q Y 2008 Chin. J. Lasers 03 479Google Scholar

    [22]

    Zaghdoudi J, Kanzari M 2018 Optik 160 189Google Scholar

    [23]

    Elshahat S, Abood I, Esmail M S M, Ouyang Z B, Lu C C 2021 Nanomaterials-Basel 11 194Google Scholar

    [24]

    高冬 2019 硕士学位论文 (青岛: 青岛科技大学)

    Gao D 2019 M. S. Thesis (Qingdao: Qingdao University of science and technology) (in Chinese)

    [25]

    毛维涛, 李杨, 赵秋玲, 滕利华, 王霞 2020 中国激光 47 292

    Mao W T, Li Y, Zhao Q L, Teng L H, Wang X 2020 Chin. J. Lasers 47 292

    [26]

    Gao W S, Xiao M, Chan C T, Tam W Y 2015 Opt. Lett. 40 5259Google Scholar

  • 图 1  由二元反转对称光子结构PCI和PCII构成的两种组合结构示意图 (a) PCI + PCII; (b) PCI + PCII + PCI

    Fig. 1.  Schematic diagram of two combined structures composed of binary inversion symmetric photonic structures: (a) PCI + PCII; (b) PCI + PCII + PCI.

    图 2  由PCI和PCII构成的组合结构 (a) 组合结构PCI + PCII的反射谱; (b) 组合结构PCI + PCII + PCI的反射谱; (c) 组合结构PCI + PCII的反射谱和表面阻抗虚部; (d) 组合结构PCI + PCII + PCI的反射谱和表面阻抗虚部

    Fig. 2.  Combined structures composed of PCI and PCII: (a) Reflection spectrum of combined structure PCI + PCII; (b) reflection spectrum of combined structure PCI + PCII + PCI; (c) reflection spectra and imaginary part of surface impedance of combined structure PCI + PCII; (d) reflection spectrum and imaginary part of surface impedance of combined structure PCI + PCII + PCI.

    图 3  组合结构PCI(N) + PCII(N) + PCI(N)随元胞数改变的计算结果 (a) 组合结构随元胞数N变化的光谱; (b) 两个界面态位置λ1, λ2随元胞数N改变的计算结果

    Fig. 3.  Calculation results of combined structure PCI (N) + PCII (N) + PCI (N) with changing of the unit cell numbers N: (a) The spectra of the combined structure with the different N; (b) two interface states of the combined structures with different N.

    图 4  组合结构PCI(N) + PCII(M) + PCI(N)随元胞数改变的计算结果 (a) 组合结构随PCII元胞数M变化的光谱(保持N = 3不变); (b) 保持M = 2N的条件不变, 组合结构的两个界面态λ1, λ2随元胞数N改变的计算结果

    Fig. 4.  Calculation results of combined structures PCI (N ) + PCII (M ) + PCI (N ) with changing of the unit cell numbers M: (a) The spectra of the combined structures with different M (keep N = 3 unchanged); (b) keeping the condition of M = 2N unchanged, the two interface states of the composite structures with different N.

    图 5  组合结构PCI + PCII的界面态λ0与组合结构PCI(N) + PCII(M) + PCI(N)(满足M = 2N)的第一个界面态λ1随元胞数N改变的计算结果

    Fig. 5.  The interface state of combined structures PCI + PCII λ0 and the first interface state of combined structures PCI (N) + PCII (M) + PCI (N) (keep M = 2N) λ1 with different N.

    图 6  制备的组合结构样品的反射光谱(N = 5) (a) PCI + PCII结构; (b) PCI + PCII + PCI结构

    Fig. 6.  Reflection spectra of the fabricated samples (N = 5): (a) PCI + PCII; (b) PCI + PCII + PCI.

    图 7  元胞数对界面态调控的实验测量结果 (a) 含不同元胞数N的组合结构PCI(N) + PCII(N) + PCI(N)的反射光谱测量结果; (b) 含不同元胞数M的组合结构PCI(N) + PCII(M) + PCI(N)的反射光谱测量结果(N = 3)

    Fig. 7.  Experiment results of unit cell numbers regulation on the interface states: (a) Reflection spectrum of the fabricated structures PCI (N) + PCII (N) + PCI (N) with different N; (b) reflection spectrum of the fabricated structures PCI (N) + PCII (M) + PCI (N) with different M (keep N = 3).

  • [1]

    段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英 2019 物理学报 68 144201Google Scholar

    Duan X K, Ren J J, Hao H, Zhang Q, Gong Q H, Gu Y 2019 Acta Phys. Sin. 68 144201Google Scholar

    [2]

    李林, 程亚, 祝世宁 2021 物理 50 308Google Scholar

    Li L, Cheng Y, Zhu S N 2021 Physics 50 308Google Scholar

    [3]

    Zhang Y B, Liu H, Cheng H, Tian J G, Chen S Q 2020 Opto-Electron. Adv. 3 200002Google Scholar

    [4]

    朱韵至 2020 博士学位论文 (南京: 南京大学)

    Zhu Y Z 2020 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [5]

    Deng Z L, Tu Q A, Wang Y J, Wang Z Q, Shi T, Feng Z W, Qiao X C, Wang G P, Xiao S M, Li X P 2021 Adv. Mater. 33 2103472Google Scholar

    [6]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [7]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [8]

    顾国昌, 李宏强, 陈洪涛, 陈鸿, 吴翔 2000 光学学报 20 728

    Gu G C, Li H Q, Chen H T, Chen H, Wu X 2000 Acta Opt. Sin. 20 728

    [9]

    杜桂强, 刘念华 2004 物理学报 53 1095Google Scholar

    Du G Q, Liu N H 2004 Acta Phys. Sin. 53 1095Google Scholar

    [10]

    Biswal A, Kumar R, Nayak C, Dhanalakshmi S 2021 Optik 234 166597Google Scholar

    [11]

    Liu X J, Ren M L, Pan Q, Zhang X R, Ma J, Wu X Y 2020 Physica E 126 114415Google Scholar

    [12]

    Taya S A, Doghmosh N, Upadhyay A 2021 Opt. Quantum Electron. 53 35Google Scholar

    [13]

    张正仁, 隆正文, 袁玉群, 刁心峰 2010 物理学报 59 587Google Scholar

    Zhang Z R, Long Z W, Yuan Y Q, Diao X F 2010 Acta Phys. Sin. 59 587Google Scholar

    [14]

    Xu X F, Huang J Y, Zhang H, Guo X Y, Mu S S, Liu Y Q, Zhai N 2021 Opt. Commun. 498 127262Google Scholar

    [15]

    Tan H Y, Zhou M J, Zhuge L J, Wu X M 2021 J. Phys. D: Appl. Phys. 54 085106Google Scholar

    [16]

    Kalozoumis P A, Theocharis G, Achilleos V, Félix S, Richoux O, Pagneux V 2018 Phys. Rev. A 98 023838Google Scholar

    [17]

    Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017Google Scholar

    [18]

    高慧芬, 周小芳, 黄学勤 2022 物理学报 71 044301Google Scholar

    Gao H F, Zhou X F, Huang X Q 2022 Acta Phys. Sin. 71 044301Google Scholar

    [19]

    Liu Q, Sun J D, Sun Y D, Ren Z H, Liu C, Lv J W, Wang F M, Wang L Y, Liu W, Sun T, Chu P K 2020 Opt. Mater. 102 109800Google Scholar

    [20]

    Feng S, Ren C, Wang W Z, Wang Y Q 2013 Opt. Commun. 289 144Google Scholar

    [21]

    刘博文, 胡明列, 宋有建, 柴路, 王清月 2008 中国激光 03 479Google Scholar

    Liu B W, Hu M L, Song Y J, Chai L, Wang Q Y 2008 Chin. J. Lasers 03 479Google Scholar

    [22]

    Zaghdoudi J, Kanzari M 2018 Optik 160 189Google Scholar

    [23]

    Elshahat S, Abood I, Esmail M S M, Ouyang Z B, Lu C C 2021 Nanomaterials-Basel 11 194Google Scholar

    [24]

    高冬 2019 硕士学位论文 (青岛: 青岛科技大学)

    Gao D 2019 M. S. Thesis (Qingdao: Qingdao University of science and technology) (in Chinese)

    [25]

    毛维涛, 李杨, 赵秋玲, 滕利华, 王霞 2020 中国激光 47 292

    Mao W T, Li Y, Zhao Q L, Teng L H, Wang X 2020 Chin. J. Lasers 47 292

    [26]

    Gao W S, Xiao M, Chan C T, Tam W Y 2015 Opt. Lett. 40 5259Google Scholar

  • [1] 王哲飞, 吴杰, 万发雨, 曾庆生, 侯建强, 傅佳辉, 吴群, 宋明歆, TayebA. Denidni. 基于类电磁诱导透明效应的极化转换滤波器. 物理学报, 2024, 73(18): 188101. doi: 10.7498/aps.73.20240632
    [2] 张熙程, 方龙杰, 庞霖. 强散射过程中基于奇异值分解的光学传输矩阵优化方法. 物理学报, 2018, 67(10): 104202. doi: 10.7498/aps.67.20172688
    [3] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态. 物理学报, 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [4] 杨韵茹, 关建飞. 基于金属-电介质-金属波导结构的等离子体滤波器的数值研究. 物理学报, 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [5] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [6] 陈颖, 王文跃, 于娜. 粒子群算法优化异质结构光子晶体环形腔滤波特性. 物理学报, 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [7] 王五松, 张利伟, 冉佳, 张冶文. 微波频段表面等离子激元波导滤波器的实验研究. 物理学报, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [8] 尹彬, 柏云龙, 齐艳辉, 冯素春, 简水生. 拉锥型啁啾光纤光栅滤波器的研究. 物理学报, 2013, 62(21): 214213. doi: 10.7498/aps.62.214213
    [9] 李乾利, 温廷敦, 许丽萍, 王志斌. 单轴应力对一维镜像光子晶体光子局域态透射峰的影响. 物理学报, 2013, 62(18): 184212. doi: 10.7498/aps.62.184212
    [10] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月. 基于圆弧谐振腔的金属-介质-金属波导滤波器的数值研究. 物理学报, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [11] 陈凡, 郝军, 李红根, 曹庄琪. 基于古斯-汉欣位移的双通道窄带滤波器. 物理学报, 2011, 60(7): 074223. doi: 10.7498/aps.60.074223
    [12] 赵冬梅, 施宇蕾, 周庆莉, 李磊, 孙会娟, 张存林. 基于人工复合材料的太赫兹波双波段滤波. 物理学报, 2011, 60(9): 093301. doi: 10.7498/aps.60.093301
    [13] 杨春云, 徐旭明, 叶涛, 缪路平. 一种新型可调制的光子晶体环形腔滤波器. 物理学报, 2011, 60(1): 017807. doi: 10.7498/aps.60.017807
    [14] 黄建亮, 卫炀, 马文全, 杨涛, 陈良惠. InAs/InxGa1-xSb二类超晶格红外探测器的吸收波长与电子-空穴波函数交叠的研究. 物理学报, 2010, 59(5): 3099-3106. doi: 10.7498/aps.59.3099
    [15] 左涛, 赵新杰, 王小坤, 岳宏卫, 方兰, 阎少林. LaAlO3衬底高温超导线性相位滤波器. 物理学报, 2009, 58(6): 4194-4198. doi: 10.7498/aps.58.4194
    [16] 房元锋, 杜春光, 李师群. 光子晶体中四能级系统的量子相干效应. 物理学报, 2006, 55(9): 4652-4658. doi: 10.7498/aps.55.4652
    [17] 童元伟, 张冶文, 赫 丽, 李宏强, 陈 鸿. 用传输矩阵法研究微波波段准一维同轴光子晶体能隙结构. 物理学报, 2006, 55(2): 935-940. doi: 10.7498/aps.55.935
    [18] 胡沁春, 何怡刚, 郭迪新, 李宏民. 基于开关电流技术的小波变换的滤波器电路实现. 物理学报, 2006, 55(2): 641-647. doi: 10.7498/aps.55.641
    [19] 袁先漳, 陆 卫, 李 宁, 陈效双, 沈学础, 资 剑. 超长波GaAs/AlGaAs量子阱红外探测器光电流谱特性研究. 物理学报, 2003, 52(2): 503-507. doi: 10.7498/aps.52.503
    [20] 周鹏, 游海洋, 王松有, 李合印, 杨月梅, 陈良尧. 金属插层对一维光子晶体中光传输特性的影响. 物理学报, 2002, 51(10): 2276-2280. doi: 10.7498/aps.51.2276
计量
  • 文章访问数:  3907
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-04
  • 修回日期:  2022-07-04
  • 上网日期:  2022-10-09
  • 刊出日期:  2022-10-20

/

返回文章
返回