搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类石墨烯复杂晶胞光子晶体中的确定性界面态

贾子源 杨玉婷 季立宇 杭志宏

引用本文:
Citation:

类石墨烯复杂晶胞光子晶体中的确定性界面态

贾子源, 杨玉婷, 季立宇, 杭志宏

Deterministic interface states in photonic crystal with graphene-allotrope-like complex unit cells

Jia Zi-Yuan, Yang Yu-Ting, Ji Li-Yu, Hang Zhi-Hong
PDF
导出引用
  • 拓扑绝缘体是当前凝聚态物理领域研究的热点问题.利用石墨烯材料的特殊能带特性来实现拓扑输运特性在设计下一代电子和能谷电子器件方面具有较广泛的应用前景.基于光子与电子的类比,利用光子拓扑材料实现了确定性界面态;构建了具有C6v对称性的类似石墨烯结构的的光子晶体复杂晶格;通过多种方式降低晶格对称性来获得具有C3v,C3,C2v和C2对称的晶体,从而打破能谷简并实现全光子带隙结构;将体拓扑性质不同的两种光子晶体摆放在一起,在此具有反转体能带性质的界面上,实现了具有单向传输特性的拓扑确定性界面态的传输.利用光子晶体结构的容易加工性,可以简便地调控拓扑界面态控制光的传播,可为未来光拓扑绝缘体的研究提供良好的平台.
    Topological insulators have aroused much research interest in condensed matter physics in recent years. Topological protected edge states can propagate unidirectionally and backscattering free along the boundaries of the topological insulators' which will be important for future electronic devices for its immunity to defects. Topology is dependent only on the symmetry of lattice of the system rather than its specific wave form. Thus, based on the analogy between electronics and photons, photonic topological insulator has also been demonstrated both theoretically and experimentally. Graphene, composed of a monolayer of carbon atoms in honeycomb lattice, exhibits unusual properties due to its intriguing band diagram. Many types of graphene allotropes have been proposed theoretically. However, due to fabrication difficulties, most of graphene allotropes are unavailable. Here, we propose to study two dimensional (2D) photonic crystal (PC) with complex lattices, similar to that of graphene allotrope. The complex PC structure provides more degrees of freedom in manipulating its symmetry.Interface states can also exist in the interface region between two PCs, if they have different topological properties. Without any surface decoration, deterministic interface states can be created when bulk photonic band inversion can be induced and are demonstrated theoretically and experimentally in 2D PCs with square lattice. By controlling the parameters of PCs, their bulk photonic band properties are engineered and topological phase transition occurs. By inverting the bulk photonic band properties, interface states exist in the common band gaps for two PC systems in the gapped region. Similarly, we proceed to complex honeycomb lattice of PCs. By lowering its original C6v symmetry to C3v, C3, C2v and even C2 symmetry, the degeneracies of valley Dirac dispersion at the corners of Brillouin zone are lifted. Photonic band inversion occurs in all four symmetries and the deterministic interface states are numerically realized in the interface region between two PCs. Unidirectional propagation of interface state immune to backscattering along the interface channels is demonstrated if a source with proper optical vortex index is utilized. Due to its easy fabrication, PC is a perfect platform to explore the topological properties of complex lattice and these acquired topological optical states can be of benefit to the control the propagation of light in the photonic waveguide.
      通信作者: 杭志宏, zhhang@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574226)、江苏省自然科学基金(批准号:BK20170058)和江苏省高校优势学科建设工程资助的课题.
      Corresponding author: Hang Zhi-Hong, zhhang@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574226), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170058), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, China.
    [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [2]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405

    [3]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [5]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [6]

    John S 1987 Phys. Rev. Lett. 58 2486

    [7]

    Sakoda K 2004 Optical Properties of Photonic Crystals (2nd Ed.) (Berlin: Springer)

    [8]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals: Molding the Flow of Light (2nd Ed.) (New Jersey: Princeton University Press)

    [9]

    Mekis A, Chen J C, Kurland I, Fan S, Villeneuve P R, Joannopoulos J D 1996 Phys. Rev. Lett. 77 3787

    [10]

    Lin S Y, Chow E, Hietala V, Villeneuve P R, Joannopoulos J D 1998 Science 282 274

    [11]

    Robertson W M, Arjavalingam G, Meade R D, Brommer K D, Rappe A M, Joannopoulos J D 1993 Opt. Lett. 18 528

    [12]

    Istrate E, Sargent E H 2006 Rev. Mod. Phys. 78 455

    [13]

    Guo J, Sun Y, Zhang Y, Li H, Jiang H, Chen H 2008 Phys. Rev. E 78 026607

    [14]

    Meade R D, Brommer K D, Rappe A M, Joannopoulos J D 1991 Phys. Rev. B 44 10961

    [15]

    Ramos-Mendieta F, Halevi P 1999 Phys. Rev. B 59 15112

    [16]

    Choi H G, Oh S S, Lee S G, Kim M W, Kim J E, Park H Y, Kee C S 2006 J. Appl. Phys. 100 123105

    [17]

    Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017

    [18]

    Huang X Q, Xiao M, Zhang Z Q, Chan C T 2014 Phys.Rev. B 90 075423

    [19]

    Yang Y T, Huang X Q, Hang Z H 2016 Phys. Rev. Appl. 5 034009

    [20]

    Huang X Q, Yang Y T, Hang Z H, Zhang Z Q, Chan C T 2016 Phys. Rev. B 93 085415

    [21]

    Yang Y T, Xu T, Xu X F, Hang Z H 2017 Opt. Lett. 42 3085

    [22]

    Rycerz A, Jakub T J, Beenakker C W J 2007 Nature Phys. 3 172

    [23]

    Xu X D, Yao W, Xiao D, Heinz T F 2014 Nature Phys. 10 343

    [24]

    Garcia-Pomar J L, Cortijo A, Nieto-Vesperinas M 2008 Phys. Rev. Lett. 100 236801

    [25]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809

    [26]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489

    [27]

    Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi 248 1879

    [28]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nature Mater. 10 582

    [29]

    Yang Y T, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X, Hang Z H 2016 arXiv:1610.07780v1

  • [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [2]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405

    [3]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [5]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [6]

    John S 1987 Phys. Rev. Lett. 58 2486

    [7]

    Sakoda K 2004 Optical Properties of Photonic Crystals (2nd Ed.) (Berlin: Springer)

    [8]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals: Molding the Flow of Light (2nd Ed.) (New Jersey: Princeton University Press)

    [9]

    Mekis A, Chen J C, Kurland I, Fan S, Villeneuve P R, Joannopoulos J D 1996 Phys. Rev. Lett. 77 3787

    [10]

    Lin S Y, Chow E, Hietala V, Villeneuve P R, Joannopoulos J D 1998 Science 282 274

    [11]

    Robertson W M, Arjavalingam G, Meade R D, Brommer K D, Rappe A M, Joannopoulos J D 1993 Opt. Lett. 18 528

    [12]

    Istrate E, Sargent E H 2006 Rev. Mod. Phys. 78 455

    [13]

    Guo J, Sun Y, Zhang Y, Li H, Jiang H, Chen H 2008 Phys. Rev. E 78 026607

    [14]

    Meade R D, Brommer K D, Rappe A M, Joannopoulos J D 1991 Phys. Rev. B 44 10961

    [15]

    Ramos-Mendieta F, Halevi P 1999 Phys. Rev. B 59 15112

    [16]

    Choi H G, Oh S S, Lee S G, Kim M W, Kim J E, Park H Y, Kee C S 2006 J. Appl. Phys. 100 123105

    [17]

    Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017

    [18]

    Huang X Q, Xiao M, Zhang Z Q, Chan C T 2014 Phys.Rev. B 90 075423

    [19]

    Yang Y T, Huang X Q, Hang Z H 2016 Phys. Rev. Appl. 5 034009

    [20]

    Huang X Q, Yang Y T, Hang Z H, Zhang Z Q, Chan C T 2016 Phys. Rev. B 93 085415

    [21]

    Yang Y T, Xu T, Xu X F, Hang Z H 2017 Opt. Lett. 42 3085

    [22]

    Rycerz A, Jakub T J, Beenakker C W J 2007 Nature Phys. 3 172

    [23]

    Xu X D, Yao W, Xiao D, Heinz T F 2014 Nature Phys. 10 343

    [24]

    Garcia-Pomar J L, Cortijo A, Nieto-Vesperinas M 2008 Phys. Rev. Lett. 100 236801

    [25]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809

    [26]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489

    [27]

    Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi 248 1879

    [28]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nature Mater. 10 582

    [29]

    Yang Y T, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X, Hang Z H 2016 arXiv:1610.07780v1

  • [1] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态. 物理学报, 2022, 71(4): 044301. doi: 10.7498/aps.71.20211642
    [2] 隋文杰, 张玉, 张紫瑞, 王小龙, 张洪方, 史强, 杨冰. 拓扑自旋光子晶体中螺旋边界态单向传输调控研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220353
    [3] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211642
    [4] 董磊, 杨剑群, 甄兆丰, 李兴冀. 预加温处理对双极晶体管过剩基极电流理想因子的影响机制. 物理学报, 2020, 69(1): 018502. doi: 10.7498/aps.69.20191151
    [5] 王彦兰, 李妍. 二维介电光子晶体中的赝自旋态与拓扑相变. 物理学报, 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [6] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [7] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [8] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象. 物理学报, 2019, 68(22): 220302. doi: 10.7498/aps.68.20191463
    [9] 沈清玮, 徐林, 蒋建华. 圆环结构磁光光子晶体中的拓扑相变. 物理学报, 2017, 66(22): 224102. doi: 10.7498/aps.66.224102
    [10] 陈泽国, 吴莹. 声子晶体中的多重拓扑相. 物理学报, 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [11] 王青海, 李锋, 黄学勤, 陆久阳, 刘正猷. 一维颗粒声子晶体的拓扑相变及可调界面态. 物理学报, 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
    [12] 朱奇光, 董昕宇, 王春芳, 王宁, 陈卫东. 多系双局域态光子晶体的可调谐滤波特性分析. 物理学报, 2015, 64(3): 034209. doi: 10.7498/aps.64.034209
    [13] 赵启凤, 庄奕琪, 包军林, 胡为. 基于1/f噪声的NPN晶体管辐照感生电荷的定量分离. 物理学报, 2015, 64(13): 136104. doi: 10.7498/aps.64.136104
    [14] 黄学勤, 陈子亭. k=0处的类狄拉克锥. 物理学报, 2015, 64(18): 184208. doi: 10.7498/aps.64.184208
    [15] 孙家涛, 孟胜. 电子的谷自由度. 物理学报, 2015, 64(18): 187301. doi: 10.7498/aps.64.187301
    [16] 李乾利, 温廷敦, 许丽萍, 王志斌. 单轴应力对一维镜像光子晶体光子局域态透射峰的影响. 物理学报, 2013, 62(18): 184212. doi: 10.7498/aps.62.184212
    [17] 章海锋, 马力, 刘少斌. 磁化等离子体光子晶体缺陷态的研究. 物理学报, 2009, 58(2): 1071-1076. doi: 10.7498/aps.58.1071
    [18] 刘晓东, 李曙光, 许兴胜, 王义全, 程丙英, 张道中. 用不同密度分布的发光分子探测光子晶体的全态密度. 物理学报, 2004, 53(1): 132-136. doi: 10.7498/aps.53.132
    [19] 刘江涛, 周云松, 王福合, 顾本源. 不同晶格光子晶体异质结的界面传导模. 物理学报, 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [20] 任红霞, 郝 跃, 许冬岗. N型槽栅金属-氧化物-半导体场效应晶体管抗热载流子效应的研究. 物理学报, 2000, 49(7): 1241-1248. doi: 10.7498/aps.49.1241
计量
  • 文章访问数:  3405
  • PDF下载量:  326
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-24
  • 修回日期:  2017-08-13
  • 刊出日期:  2017-11-05

类石墨烯复杂晶胞光子晶体中的确定性界面态

  • 1. 苏州大学物理与光电·能源学部, 苏州纳米科技协同创新中心, 苏州 215006
  • 通信作者: 杭志宏, zhhang@suda.edu.cn
    基金项目: 国家自然科学基金(批准号:11574226)、江苏省自然科学基金(批准号:BK20170058)和江苏省高校优势学科建设工程资助的课题.

摘要: 拓扑绝缘体是当前凝聚态物理领域研究的热点问题.利用石墨烯材料的特殊能带特性来实现拓扑输运特性在设计下一代电子和能谷电子器件方面具有较广泛的应用前景.基于光子与电子的类比,利用光子拓扑材料实现了确定性界面态;构建了具有C6v对称性的类似石墨烯结构的的光子晶体复杂晶格;通过多种方式降低晶格对称性来获得具有C3v,C3,C2v和C2对称的晶体,从而打破能谷简并实现全光子带隙结构;将体拓扑性质不同的两种光子晶体摆放在一起,在此具有反转体能带性质的界面上,实现了具有单向传输特性的拓扑确定性界面态的传输.利用光子晶体结构的容易加工性,可以简便地调控拓扑界面态控制光的传播,可为未来光拓扑绝缘体的研究提供良好的平台.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回