搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

k=0处的类狄拉克锥

黄学勤 陈子亭

引用本文:
Citation:

k=0处的类狄拉克锥

黄学勤, 陈子亭

Dirac-like cones at k=0

Huang Xue-Qin, Chan Che-Ting
PDF
导出引用
  • 狄拉克锥在电子和经典波体系中分别被发现, 由于其线性能带关系, 伴随着很多独特的现象. 除了一般存在于布里渊区边界处的狄拉克锥, k=0处也存在包含线性能带关系的类狄拉克锥. 这个类狄拉克锥可以由单极子和偶极子的偶然简并而形成. k=0处的类狄拉克锥可以通过两维电介质光子晶体来实现, 利用等效媒质理论, 此时的光子晶体在类狄拉克点频率可以等效为介电常数和磁导率都为零的材料. 电介质双零折射率材料既可以避免阻抗的不匹配, 也可以避免体系推广到高频所引起的强烈损耗. 此外, k=0处的类狄拉克锥与双零折射率的概念可以从两维体系拓展到三维体系, 而且还可以从电磁波体系推广到声波和弹性波体系. 利用具有类狄拉克点的两维光子晶体, 在材料参数都偏离类狄拉克点条件的两个半无限大光子晶体所构成的界面中, 一定存在界面态. 这些界面态的存在可以通过层状多重散射理论得到的表面阻抗以及体能带的几何相位来彻底解释.
    Dirac cones and Dirac points are found at the K (K') points in the Brillouin zones of electronic and classical waves systems with hexagonal or triangular lattices. Accompanying the conical dispersions, there are many intriguing phenomena including quantum Hall effect, Zitterbewegung and Klein tunneling. Such Dirac cones at the Brillouin zone boundary are the consequences of the lattice symmetry and time reversal symmetry. Conical dispersions are difficult to form in the zone center because of time reversal symmetry, which generally requires the band dispersions to be quadratic at k=0. However, the conical dispersions with a triply degenerate state at k=0 can be realized in two dimensional (2D) photonic crystal (PC) using accidental degeneracy. The triply degenerate state consists of two linear bands that generate Dirac cones and an additional flat band intersecting at the Dirac point. If the triply degenerate state is derived from the monopolar and dipolar excitations, effective medium theory can relate this 2D PC to a double zero-refractive-index material with effective permittivity and permeability equal to zero simultaneously. There is hence a subtle relationship between two seemingly unrelated concepts: Dirac-like cone and zero-refractive index. The all-dielectric double zero-refractive-index material has advantage over metallic zero-index metamaterials which are usually poorly impedance matched to the background and are lossy in high frequencies. The Dirac-like cone zero-index materials have impedances that can tune to match the background material and the loss is small as the system has an all-dielectric construction, enabling the possibility of realizing zero refractive index in optical frequencies. The realization of Dirac-like cones at k=0 can be extended from the electromagnetic wave system to acoustic and elastic wave systems and effective medium theory can also be applied to relate these systems to zero-index materials. The concept of Dirac/Dirac-like cone is intrinsically 2D. However, using accidental degeneracy and special symmetries, the concept of Dirac-like point can be extended from two to three dimensions in electromagnetic and acoustic waves. Effective medium theory is also applicable to these systems, and these systems can be related to isotropic media with effectively zero refractive indices. One interesting implication of Dirac-like cones in 2D PC is the existence of robust interface states. The existence of interface states is not a trivial problem and there is usually no assurance that localized state can be found at the boundary of photonic or phononic crystal. In order to create an interface state, one usually needs to decorate the interface with strong perturbations. Recently, it is found that interface state can always be found at the boundary separating two semi-infinite PCs which have their system parameters slightly perturbed from the Dirac-like cone formation condition. The assured existence of interface states in such a system can be explained by the sign of the surface impedance of the PCs on either side of the boundary which can be derived using a layer-by-layer multiple scattering theory. In a deeper level, the existence of the interface state can be accounted for by the geometric properties of the bulk band. It turns out that the geometric phases of the bulk band determine the surface impedance within the frequency range of the band gap. The geometric property of the momentum space can hence be used to explain the existence of interface states in real space through a bulk-interface correspondence.
      通信作者: 陈子亭, phchan@ust.hk
    • 基金项目: 香港大学教育资助委员会卓越学科领域计划(批准号: Hong Kong Research Grant Council grant AoE/P-02/12)资助的课题.
      Corresponding author: Chan Che-Ting, phchan@ust.hk
    • Funds: Project supported by Hong Kong Research Grant Council (Grant No. AoE/P-02/12).
    [1]

    Dirac P A M 1928 Proc. R. Soc. A: Math. Phys. Eng. Sci. 117 610

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Gregorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [4]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [5]

    Gusynin V P, Sharapov S G 2005 Phys. Rev. Lett. 95 146801

    [6]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [7]

    Katsnelsona M I 2006 Eur. Phys. J. B 51 157

    [8]

    Cserti J, David G 2006 Phys. Rev. B 74 172305

    [9]

    Rusin T M, Zawadzki W 2007 Phys. Rev. B 76 195439

    [10]

    David G, Cserti J 2010 Phys. Rev. B 81 121417

    [11]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [12]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [13]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Ponomarenko L A, Jiang D, Geim A K 2006 Phys. Rev. Lett. 97 016801

    [14]

    Geim A K, MacDonald A H 2007 Phys. Today 60 35

    [15]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [16]

    Plihal M, Maradudin A A 1991 Phys. Rev. B 44 8565

    [17]

    Sepkhanov R A, Bazaliy Ya B, Beenakker C W J 2007 Phys. Rev. A 75 063813

    [18]

    Diem M, Koschny T, Soukoulis C M 2010 Physica B 405 2990

    [19]

    Sepkhanov R A, Nilsson J, Beenakker C W J 2008 Phys. Rev. B 78 045122

    [20]

    Zhang X 2008 Phys. Rev. Lett. 100 113903

    [21]

    Zhang X, Liu Z 2008 Phys. Rev. Lett. 101 264303

    [22]

    Raghu S, Haldane F D M 2008 Phys. Rev. A 78 033834

    [23]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [24]

    Ochiai T, Onoda M 2009 Phys. Rev. B 80 155103

    [25]

    Ochiai T 2010 J. Phys.: Condens. Matter 22 225502

    [26]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [27]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [28]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [29]

    Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J 2005 Phys. Rev. Lett. 95 137404

    [30]

    Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2005 Opt. Lett. 30 3356

    [31]

    Dolling G, Wegener M, Soukoulis C M, Linden S 2007 Opt. Lett. 32 53

    [32]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [33]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [34]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [35]

    Leonhardt U 2006 Science 312 1777

    [36]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [37]

    Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R, Pendry J B 2008 Photon. Nanostruct. Fundam. Appl. 6 87

    [38]

    Yang T, Chen H Y, Luo X D, Ma H R 2008 Opt. Express 16 18545

    [39]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105

    [40]

    Lai Y, Ng J, Chen H Y, Han D, Xiao J, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 253902

    [41]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403

    [42]

    Silveirinha M, Engheta N 2007 Phys. Rev. B 75 075119

    [43]

    Silveirinha M G, Engheta N 2007 Phys. Rev. B 76 245109

    [44]

    Alu A, Engheta N 2008 Phys. Rev. B 78 045102

    [45]

    Alu A, Silveirinha M G, Engheta N 2008 Phys. Rev. E 78 016604

    [46]

    Edwards B, Alu A, Silveirinha M G, Engheta N 2009 J. Appl. Phys. 105 044905

    [47]

    Liu R, Cheng Q, Hand T, Mock J J, Cui T J, Cummer S A, Smith D R 2008 Phys. Rev. Lett. 100 023903

    [48]

    Edwards B, Alu A, Young M E, Silveirinha M, Engheta N 2008 Phys. Rev. Lett. 100 033903

    [49]

    Halterman K, Feng S 2008 Phys. Rev. A 78 021805

    [50]

    Ziolkowski R W 2004 Phys. Rev. E 70 046608

    [51]

    Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P 2002 Phys. Rev. Lett. 89 213902

    [52]

    Alu A, Silveirinha M G, Salandrino A, Engheta N 2007 Phys. Rev. B 75 155410

    [53]

    Hao J, Yan W, Qiu M 2010 Appl. Phys. Lett. 96 101109

    [54]

    Jin Y, He S 2010 Opt. Express 18 16587

    [55]

    Nguyen V C, Chen L, Halterman K 2010 Phys. Rev. Lett. 105 233908

    [56]

    Xu Y, Chen H 2011 Appl. Phys. Lett. 98 113501

    [57]

    Huang X, Lai Y, Hang Z H, Zheng H, Chan C T 2011 Nat. Mater. 10 582

    [58]

    Chan C T, Hang Z H, Huang X 2012 Advances in OptoElectronics 2012 313984

    [59]

    Chan C T, Huang X, Liu F, Hang Z H 2012 PIER B 44 163

    [60]

    Wang L G, Wang Z G, Zhang J X, Zhu S Y 2009 Opt. Lett. 34 1510

    [61]

    Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141

    [62]

    Liu F, Huang X, Chan C T 2012 Appl. Phys. Lett. 100 071911

    [63]

    Liu F, Lai Y, Huang X, Chan C T 2011 Phys. Rev. B 84 224113

    [64]

    Sakoda K 2012 Opt. Express 20 3898

    [65]

    Huang X, Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. B 90 075423

    [66]

    Sakoda K, Zhou H 2010 Opt. Express 18 27371

    [67]

    Sakoda K, Zhou H 2011 Opt. Express 19 13899

    [68]

    Wu Y, Li J, Zhang Z Q, Chan C T 2006 Phys. Rev. B 74 085111

    [69]

    Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. Photon. 7 791

    [70]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals: Molding the Flow of Light (2nd Ed.) (Princeton: Princeton University Press)

    [71]

    Lawrence F J, Botten L C, Dossou K B, McPhedran R C, de Sterke C M 2010 Phys. Rev. A 82 053840

    [72]

    Lawrence F J, Botten L C, Dossou K B, de Sterke C M, McPhedran R C 2009 Phys. Rev. A 80 023826

    [73]

    Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017

    [74]

    Wang Z, Chong Y, Joannopoulos J D, Soljacic M 2009 Nature 461 772

    [75]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196

    [76]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233

    [77]

    Lu L, Fu L, Joannopoulos J D, Soljacic M 2013 Nat Photon. 7 294

    [78]

    Fang K, Yu Z, Fan S 2012 Nat Photon. 6 782

    [79]

    Hafezi M, Demler E A, Lukin M D, Taylor J M 2011 Nat. Phys. 7 907

    [80]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2008 Phys. Rev. Lett. 100 013905

    [81]

    Yu Z, Veronis G, Wang Z, Fan S 2008 Phys. Rev. Lett. 100 023902

    [82]

    Kraus Y E, Lahini Y, Ringel Z, Verbin M, Zilberberg O 2012 Phys. Rev. Lett. 109 106402

    [83]

    Poo Y, Wu R X, Lin Z, Yang Y, Chan C T 2011 Phys. Rev. Lett. 106 093903

    [84]

    Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J, Szameit A, Chen Z, Segev M 2014 Nat. Mater. 13 57

    [85]

    Rechtsman M C, Plotnik Y, Zeuner J M, Song D, Chen Z, Szameit A, Segev M 2013 Phys. Rev. Lett. 111 103901

    [86]

    Zak J 1989 Phys. Rev. Lett. 62 2747

  • [1]

    Dirac P A M 1928 Proc. R. Soc. A: Math. Phys. Eng. Sci. 117 610

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Gregorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [4]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [5]

    Gusynin V P, Sharapov S G 2005 Phys. Rev. Lett. 95 146801

    [6]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [7]

    Katsnelsona M I 2006 Eur. Phys. J. B 51 157

    [8]

    Cserti J, David G 2006 Phys. Rev. B 74 172305

    [9]

    Rusin T M, Zawadzki W 2007 Phys. Rev. B 76 195439

    [10]

    David G, Cserti J 2010 Phys. Rev. B 81 121417

    [11]

    Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [12]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [13]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Ponomarenko L A, Jiang D, Geim A K 2006 Phys. Rev. Lett. 97 016801

    [14]

    Geim A K, MacDonald A H 2007 Phys. Today 60 35

    [15]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [16]

    Plihal M, Maradudin A A 1991 Phys. Rev. B 44 8565

    [17]

    Sepkhanov R A, Bazaliy Ya B, Beenakker C W J 2007 Phys. Rev. A 75 063813

    [18]

    Diem M, Koschny T, Soukoulis C M 2010 Physica B 405 2990

    [19]

    Sepkhanov R A, Nilsson J, Beenakker C W J 2008 Phys. Rev. B 78 045122

    [20]

    Zhang X 2008 Phys. Rev. Lett. 100 113903

    [21]

    Zhang X, Liu Z 2008 Phys. Rev. Lett. 101 264303

    [22]

    Raghu S, Haldane F D M 2008 Phys. Rev. A 78 033834

    [23]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [24]

    Ochiai T, Onoda M 2009 Phys. Rev. B 80 155103

    [25]

    Ochiai T 2010 J. Phys.: Condens. Matter 22 225502

    [26]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [27]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [28]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [29]

    Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J 2005 Phys. Rev. Lett. 95 137404

    [30]

    Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V 2005 Opt. Lett. 30 3356

    [31]

    Dolling G, Wegener M, Soukoulis C M, Linden S 2007 Opt. Lett. 32 53

    [32]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [33]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [34]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [35]

    Leonhardt U 2006 Science 312 1777

    [36]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [37]

    Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R, Pendry J B 2008 Photon. Nanostruct. Fundam. Appl. 6 87

    [38]

    Yang T, Chen H Y, Luo X D, Ma H R 2008 Opt. Express 16 18545

    [39]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105

    [40]

    Lai Y, Ng J, Chen H Y, Han D, Xiao J, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 253902

    [41]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403

    [42]

    Silveirinha M, Engheta N 2007 Phys. Rev. B 75 075119

    [43]

    Silveirinha M G, Engheta N 2007 Phys. Rev. B 76 245109

    [44]

    Alu A, Engheta N 2008 Phys. Rev. B 78 045102

    [45]

    Alu A, Silveirinha M G, Engheta N 2008 Phys. Rev. E 78 016604

    [46]

    Edwards B, Alu A, Silveirinha M G, Engheta N 2009 J. Appl. Phys. 105 044905

    [47]

    Liu R, Cheng Q, Hand T, Mock J J, Cui T J, Cummer S A, Smith D R 2008 Phys. Rev. Lett. 100 023903

    [48]

    Edwards B, Alu A, Young M E, Silveirinha M, Engheta N 2008 Phys. Rev. Lett. 100 033903

    [49]

    Halterman K, Feng S 2008 Phys. Rev. A 78 021805

    [50]

    Ziolkowski R W 2004 Phys. Rev. E 70 046608

    [51]

    Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P 2002 Phys. Rev. Lett. 89 213902

    [52]

    Alu A, Silveirinha M G, Salandrino A, Engheta N 2007 Phys. Rev. B 75 155410

    [53]

    Hao J, Yan W, Qiu M 2010 Appl. Phys. Lett. 96 101109

    [54]

    Jin Y, He S 2010 Opt. Express 18 16587

    [55]

    Nguyen V C, Chen L, Halterman K 2010 Phys. Rev. Lett. 105 233908

    [56]

    Xu Y, Chen H 2011 Appl. Phys. Lett. 98 113501

    [57]

    Huang X, Lai Y, Hang Z H, Zheng H, Chan C T 2011 Nat. Mater. 10 582

    [58]

    Chan C T, Hang Z H, Huang X 2012 Advances in OptoElectronics 2012 313984

    [59]

    Chan C T, Huang X, Liu F, Hang Z H 2012 PIER B 44 163

    [60]

    Wang L G, Wang Z G, Zhang J X, Zhu S Y 2009 Opt. Lett. 34 1510

    [61]

    Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141

    [62]

    Liu F, Huang X, Chan C T 2012 Appl. Phys. Lett. 100 071911

    [63]

    Liu F, Lai Y, Huang X, Chan C T 2011 Phys. Rev. B 84 224113

    [64]

    Sakoda K 2012 Opt. Express 20 3898

    [65]

    Huang X, Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. B 90 075423

    [66]

    Sakoda K, Zhou H 2010 Opt. Express 18 27371

    [67]

    Sakoda K, Zhou H 2011 Opt. Express 19 13899

    [68]

    Wu Y, Li J, Zhang Z Q, Chan C T 2006 Phys. Rev. B 74 085111

    [69]

    Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. Photon. 7 791

    [70]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals: Molding the Flow of Light (2nd Ed.) (Princeton: Princeton University Press)

    [71]

    Lawrence F J, Botten L C, Dossou K B, McPhedran R C, de Sterke C M 2010 Phys. Rev. A 82 053840

    [72]

    Lawrence F J, Botten L C, Dossou K B, de Sterke C M, McPhedran R C 2009 Phys. Rev. A 80 023826

    [73]

    Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017

    [74]

    Wang Z, Chong Y, Joannopoulos J D, Soljacic M 2009 Nature 461 772

    [75]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196

    [76]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233

    [77]

    Lu L, Fu L, Joannopoulos J D, Soljacic M 2013 Nat Photon. 7 294

    [78]

    Fang K, Yu Z, Fan S 2012 Nat Photon. 6 782

    [79]

    Hafezi M, Demler E A, Lukin M D, Taylor J M 2011 Nat. Phys. 7 907

    [80]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2008 Phys. Rev. Lett. 100 013905

    [81]

    Yu Z, Veronis G, Wang Z, Fan S 2008 Phys. Rev. Lett. 100 023902

    [82]

    Kraus Y E, Lahini Y, Ringel Z, Verbin M, Zilberberg O 2012 Phys. Rev. Lett. 109 106402

    [83]

    Poo Y, Wu R X, Lin Z, Yang Y, Chan C T 2011 Phys. Rev. Lett. 106 093903

    [84]

    Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J, Szameit A, Chen Z, Segev M 2014 Nat. Mater. 13 57

    [85]

    Rechtsman M C, Plotnik Y, Zeuner J M, Song D, Chen Z, Szameit A, Segev M 2013 Phys. Rev. Lett. 111 103901

    [86]

    Zak J 1989 Phys. Rev. Lett. 62 2747

  • [1] 胡晨阳, 梁家洛, 郑日翌, 陆久阳, 邓伟胤, 黄学勤, 刘正猷. 一维合成维度水基声子晶体. 物理学报, 2024, 73(10): 104301. doi: 10.7498/aps.73.20240298
    [2] 周晓霞, 陈英, 蔡力. 基于零折射率介质的超窄带光学滤波器. 物理学报, 2023, 72(17): 174205. doi: 10.7498/aps.72.20230394
    [3] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态. 物理学报, 2022, 71(4): 044301. doi: 10.7498/aps.71.20211642
    [4] 代美芹, 张清悦, 赵秋玲, 王茂榕, 王霞. 一维反转对称光子结构中界面态的可调控特性. 物理学报, 2022, 71(20): 204205. doi: 10.7498/aps.71.20220383
    [5] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211642
    [6] 董磊, 杨剑群, 甄兆丰, 李兴冀. 预加温处理对双极晶体管过剩基极电流理想因子的影响机制. 物理学报, 2020, 69(1): 018502. doi: 10.7498/aps.69.20191151
    [7] 王青海, 李锋, 黄学勤, 陆久阳, 刘正猷. 一维颗粒声子晶体的拓扑相变及可调界面态. 物理学报, 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
    [8] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态. 物理学报, 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [9] 高汉峰, 张欣, 吴福根, 姚源卫. 二维三组元声子晶体中的半狄拉克点及奇异特性. 物理学报, 2016, 65(4): 044301. doi: 10.7498/aps.65.044301
    [10] 陆志仁, 梁斌明, 丁俊伟, 陈家璧, 庄松林. 近零折射率材料的古斯汉欣位移的特性研究. 物理学报, 2016, 65(15): 154208. doi: 10.7498/aps.65.154208
    [11] 耿滔, 吴娜, 董祥美, 高秀敏. 基于磁流体光子晶体的可调谐近似零折射率研究. 物理学报, 2016, 65(1): 014213. doi: 10.7498/aps.65.014213
    [12] 赵启凤, 庄奕琪, 包军林, 胡为. 基于1/f噪声的NPN晶体管辐照感生电荷的定量分离. 物理学报, 2015, 64(13): 136104. doi: 10.7498/aps.64.136104
    [13] 王晓, 陈立潮, 刘艳红, 石云龙, 孙勇. 纵模对光子晶体中类狄拉克点传输特性的影响. 物理学报, 2015, 64(17): 174206. doi: 10.7498/aps.64.174206
    [14] 赵浩, 沈义峰, 张中杰. 光子晶体中基于有效折射率接近零的光束准直出射. 物理学报, 2014, 63(17): 174204. doi: 10.7498/aps.63.174204
    [15] 陈颖, 范卉青, 卢波. 带多孔硅表面缺陷腔的半无限光子晶体Tamm态及其折射率传感机理. 物理学报, 2014, 63(24): 244207. doi: 10.7498/aps.63.244207
    [16] 李乾利, 温廷敦, 许丽萍, 王志斌. 单轴应力对一维镜像光子晶体光子局域态透射峰的影响. 物理学报, 2013, 62(18): 184212. doi: 10.7498/aps.62.184212
    [17] 刘丽想, 董丽娟, 刘艳红, 杨春花, 杨成全, 石云龙. 平均折射率为零的光子晶体中缺陷模频率特性的实验研究. 物理学报, 2011, 60(8): 084218. doi: 10.7498/aps.60.084218
    [18] 刘江涛, 周云松, 王福合, 顾本源. 不同晶格光子晶体异质结的界面传导模. 物理学报, 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [19] 汤晓燕, 张义门, 张玉明, 郜锦侠. 界面态电荷对n沟6H-SiC MOSFET场效应迁移率的影响. 物理学报, 2003, 52(4): 830-833. doi: 10.7498/aps.52.830
    [20] 任红霞, 郝 跃, 许冬岗. N型槽栅金属-氧化物-半导体场效应晶体管抗热载流子效应的研究. 物理学报, 2000, 49(7): 1241-1248. doi: 10.7498/aps.49.1241
计量
  • 文章访问数:  8971
  • PDF下载量:  781
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-06
  • 修回日期:  2015-06-15
  • 刊出日期:  2015-09-05

/

返回文章
返回