搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纵模对光子晶体中类狄拉克点传输特性的影响

王晓 陈立潮 刘艳红 石云龙 孙勇

引用本文:
Citation:

纵模对光子晶体中类狄拉克点传输特性的影响

王晓, 陈立潮, 刘艳红, 石云龙, 孙勇

Effect of longitudinal mode on the transmission properties near the Dirac-like point of the photonic crystals

Wang Xiao, Chen Li-Chao, Liu Yan-Hong, Shi Yun-Long, Sun Yong
PDF
导出引用
  • 本文通过数值仿真分析了无序正方晶格光子晶体中类狄拉克点的光子传输特性. 结构中的无序是通过随机移动氧化铝介质柱的位置来实现. 研究发现, 由于纵模被激发出来, 在类狄拉克点及其附近无序对结构透射率的影响是不同的. 在类狄拉克点, 由于纵模的干扰, 透射率随着无序的增加而减小, 与通带的行为类似. 在不受纵模干扰的类狄拉克点附近, 透射率几乎不受无序的影响, 这主要是由于结构可以等效为近零折射率材料, 等效的波长非常大. 本文的研究结果有助于人们进一步理解光学纵模和零折射率材料.
    Recently, Chan and his collaborators reported that a crossing point of bands can be achieved at the Brillouin zone center in two-dimensional (2D) dielectric photonic crystals (PhCs) by accidental degeneracy of modes. At the crossing point, the accidental threefold degeneracy of modes generates a Dirac cone and an additional flat band (longitudinal mode) intersecting the Dirac cone. This is different from that of the Dirac point at the corner of the hexagonal Brillouin zone in which only Dirac cone exists. As a result, the crossing point at the Brillouin zone center is called a Dirac-like point. If the accidental degeneracy occurs by a monopole mode and two dipolar modes, the dielectric PhCs can be mapped to a zero-refractive-index system in which the effective permittivity and permeability are zero at the Dirac-like point from the effective medium theory. According to the Maxwell equations, if the permittivity and permeability are zero, the optical longitudinal modes can exist, in additional to the well-known transverse modes. The additional flat band at the Dirac-like point is closely connected with the longitudinal mode. For a homogeneous zero-index material (ZIM), the flat band is dispersionless and the longitudinal mode cannot couple with the external light. But in a finite-sized PhC, there is always some spatial dispersion, so the flat band is not perfectly dispersionless when it is away from the zone center. Therefore, if the wave source is a Gaussian beam with non-zero k-parallel components, the longitudinal mode can be excited. And the effective wavelength of ZIM is extremely large, leading to many scattering properties. However, in a PhC which behaves as if it had a zero refractive index, it is very interesting to show how the longitudinal mode influences the wave propagations in the PhC when the longitudinal mode is excited. In this paper, the effect of longitudinal mode on the transmission properties near the Dirac-like point of PhCs is investigated by numerical simulation. The alumina dielectric rods can be moved randomly in the structure to result in the disorder of the structure. Our results show that the transmission properties at the Dirac-like point are very different from those near the Dirac-like point, when the longitudinal mode is excited. At the Dirac-like point, the transmittance decreases with increasing disorder, as a result of the influence of the longitudinal mode, which is similar to the one in the pass band. Above the Dirac-like point without the disturbance of longitudinal mode, the transmittance is insensitive to the disorder in the structure, so that the structure may mimic a near-zero index materials and have a large effective wavelength. These results may further improve the understanding about the optical longitudinal mode and the zero refractive material.
      通信作者: 孙勇, yongsun@tongji.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB922001)、国家自然科学基金(批准号: 11234010, 11474220, 11274207, 11204217)、上海市教育委员创新计划(批准号: 14ZZ040)和山西省自然科学基金(批准号: 2012011011-5, 2013011007-2)资助的课题.
      Corresponding author: Sun Yong, yongsun@tongji.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB922001), the National Natural Science Foundation of China (Grant Nos. 11234010, 11474220, 11274207, 11204217), the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 14ZZ040), and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2012011011-5, 2013011007-2).
    [1]

    Zhong K, Zhang H Y, Zhang Y P, Li X F, Wang P, Yao J Q 2007 Acta Phys. Sin. 56 7029 (in Chinese) [钟凯, 张会云, 张玉萍, 李喜福, 王鹏, 姚建铨 2007 物理学报 56 7029]

    [2]

    Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141

    [3]

    Sepkhanov R A, Bazaliy Ya B, Beenakker C W J 2007 Phys. Rev. A 75 063813

    [4]

    Zandbergen Sander R, de Dood Michiel J A 2010 Phys. Rev. Lett. 104 043903

    [5]

    Bittner S, Dietz B, Miski-Oglu M, Richter A 2012 Phys. Rev. B 85 064301

    [6]

    Zhang X D 2008 Phys. Rev. Lett. 100 113903

    [7]

    Bahat. -Treidel O, Peleg O, Grobman M, Shapira N, Segev M, Pereg-Barnea T 2010 Phys. Rev. Lett. 104 063901

    [8]

    Poo Y, Wu R X, Lin Z F, Yang Y, Chan C T 2011 Phys. Rev. Lett. 106 093903

    [9]

    Ouyang C F, Han D Z, Zhao F Y, Hu X H, Liu X H, Zi J 2012 J. Phys. : Condens. Matter 24 492203

    [10]

    Kuhl U, Barkhofen S, Tudorovskiy T, Stöckmann H-J, Hossain T, de Forges de Parny L, Mortessagne F 2010 Phys. Rev. B 82 094308

    [11]

    Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J, Szameit A, Chen Z, Segev M 2014 Nat. mater. 13 57

    [12]

    Sepkhanov R A, Ossipov A, Beenakker C W J 2009 EPL 85 14005

    [13]

    Wang X, Jiang H T, Yan C, Sun Y, Li Y H, Shi Y L, Chen H 2013 EPL 103 17003

    [14]

    Bellec M, Kuhl U, Montambaux G, Mortessagne F 2013 Phys. Rev. Lett. 110 033902

    [15]

    Rechtsman M C, Zeuner J M, Tünnermann A, Stefan Nolte, Segev M, Szamerit A 2013 Nat. photonics 7 153

    [16]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582

    [17]

    Sakoda K 2012 Opt. Express 20 25181

    [18]

    Li Y, Wu Y, Chen X, Mei J 2013 Opt. Express 21 7699

    [19]

    Chan C T, Hang Z H, Huang X 2012 Adv. in OptoElectron. 2012 313984

    [20]

    Liu F M, Lai Y, Huang X Q, Chan C T 2011 Phys. Rev. B 84 224113

    [21]

    Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. photonics 7 791

    [22]

    Zhao H, Shen Y F, Zhang Z J 2014 Acta Phys. Sin. 63 174204 (in Chinese) [赵浩, 沈义峰, 张中杰 2014 物理学报 63 174204]

    [23]

    D'Aguanno G, Mattiucci N, Conti C, Bloemer M J 2013 Phys. Rev. B 87 085135

    [24]

    Mattiucci N, Bloemer M J, D'Aguanno G 2013 Opt. Express 21 11862

    [25]

    Wang X, Jiang H T, Yan C, Deng F S, Sun Y, Li Y H, Shi Y L, Chen H 2014 EPL 108 14002

    [26]

    Yang Y B, Wang S F, Li X J, Wang Y C, Liang W 2010 Acta Phys. Sin. 59 5073 (in Chinese) [杨毅彪, 王拴锋, 李秀杰, 王云才, 梁伟 2010 物理学报 59 5073]

  • [1]

    Zhong K, Zhang H Y, Zhang Y P, Li X F, Wang P, Yao J Q 2007 Acta Phys. Sin. 56 7029 (in Chinese) [钟凯, 张会云, 张玉萍, 李喜福, 王鹏, 姚建铨 2007 物理学报 56 7029]

    [2]

    Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141

    [3]

    Sepkhanov R A, Bazaliy Ya B, Beenakker C W J 2007 Phys. Rev. A 75 063813

    [4]

    Zandbergen Sander R, de Dood Michiel J A 2010 Phys. Rev. Lett. 104 043903

    [5]

    Bittner S, Dietz B, Miski-Oglu M, Richter A 2012 Phys. Rev. B 85 064301

    [6]

    Zhang X D 2008 Phys. Rev. Lett. 100 113903

    [7]

    Bahat. -Treidel O, Peleg O, Grobman M, Shapira N, Segev M, Pereg-Barnea T 2010 Phys. Rev. Lett. 104 063901

    [8]

    Poo Y, Wu R X, Lin Z F, Yang Y, Chan C T 2011 Phys. Rev. Lett. 106 093903

    [9]

    Ouyang C F, Han D Z, Zhao F Y, Hu X H, Liu X H, Zi J 2012 J. Phys. : Condens. Matter 24 492203

    [10]

    Kuhl U, Barkhofen S, Tudorovskiy T, Stöckmann H-J, Hossain T, de Forges de Parny L, Mortessagne F 2010 Phys. Rev. B 82 094308

    [11]

    Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J, Szameit A, Chen Z, Segev M 2014 Nat. mater. 13 57

    [12]

    Sepkhanov R A, Ossipov A, Beenakker C W J 2009 EPL 85 14005

    [13]

    Wang X, Jiang H T, Yan C, Sun Y, Li Y H, Shi Y L, Chen H 2013 EPL 103 17003

    [14]

    Bellec M, Kuhl U, Montambaux G, Mortessagne F 2013 Phys. Rev. Lett. 110 033902

    [15]

    Rechtsman M C, Zeuner J M, Tünnermann A, Stefan Nolte, Segev M, Szamerit A 2013 Nat. photonics 7 153

    [16]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582

    [17]

    Sakoda K 2012 Opt. Express 20 25181

    [18]

    Li Y, Wu Y, Chen X, Mei J 2013 Opt. Express 21 7699

    [19]

    Chan C T, Hang Z H, Huang X 2012 Adv. in OptoElectron. 2012 313984

    [20]

    Liu F M, Lai Y, Huang X Q, Chan C T 2011 Phys. Rev. B 84 224113

    [21]

    Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. photonics 7 791

    [22]

    Zhao H, Shen Y F, Zhang Z J 2014 Acta Phys. Sin. 63 174204 (in Chinese) [赵浩, 沈义峰, 张中杰 2014 物理学报 63 174204]

    [23]

    D'Aguanno G, Mattiucci N, Conti C, Bloemer M J 2013 Phys. Rev. B 87 085135

    [24]

    Mattiucci N, Bloemer M J, D'Aguanno G 2013 Opt. Express 21 11862

    [25]

    Wang X, Jiang H T, Yan C, Deng F S, Sun Y, Li Y H, Shi Y L, Chen H 2014 EPL 108 14002

    [26]

    Yang Y B, Wang S F, Li X J, Wang Y C, Liang W 2010 Acta Phys. Sin. 59 5073 (in Chinese) [杨毅彪, 王拴锋, 李秀杰, 王云才, 梁伟 2010 物理学报 59 5073]

  • [1] 刘辉, 陆展鹏, 徐志浩. 一维非厄米十字晶格中的退局域-局域转变. 物理学报, 2024, 73(13): 137201. doi: 10.7498/aps.73.20240510
    [2] 纪雨萱, 张明楷, 李妍. 二维光子晶体中的双波段半狄拉克锥与零折射率材料. 物理学报, 2024, 73(18): 1-10. doi: 10.7498/aps.73.20240800
    [3] 周晓霞, 陈英, 蔡力. 基于零折射率介质的超窄带光学滤波器. 物理学报, 2023, 72(17): 174205. doi: 10.7498/aps.72.20230394
    [4] 刘佳琳, 庞婷方, 杨孝森, 王正岭. 无序非厄米Su-Schrieffer-Heeger中的趋肤效应. 物理学报, 2022, 71(22): 227402. doi: 10.7498/aps.71.20221151
    [5] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5—10 µm波段超导单光子探测器设计与研制. 物理学报, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [6] 傅聪, 叶梦浩, 赵晖, 陈宇光, 鄢永红. 共轭聚合物链中光激发过程的无序效应. 物理学报, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [7] 王海啸, 徐林, 蒋建华. Dirac光子晶体. 物理学报, 2017, 66(22): 220302. doi: 10.7498/aps.66.220302
    [8] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态. 物理学报, 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [9] 耿滔, 吴娜, 董祥美, 高秀敏. 基于磁流体光子晶体的可调谐近似零折射率研究. 物理学报, 2016, 65(1): 014213. doi: 10.7498/aps.65.014213
    [10] 黄学勤, 陈子亭. k=0处的类狄拉克锥. 物理学报, 2015, 64(18): 184208. doi: 10.7498/aps.64.184208
    [11] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [12] 侯碧辉, 刘凤艳, 岳明, 王克军. 纳米金属镝的传导电子定域化. 物理学报, 2011, 60(1): 017201. doi: 10.7498/aps.60.017201
    [13] 何正红, 叶志成, 李争光, 崔晴宇, 苏翼凯. 复合周期的介质-液晶光子晶体研究. 物理学报, 2011, 60(3): 034213. doi: 10.7498/aps.60.034213
    [14] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 无序对二维声子晶体平板负折射成像的影响. 物理学报, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [15] 伍楷舜, 龙兴腾, 董建文, 陈弟虎, 汪河洲. 光子晶体异质结的位相和应用. 物理学报, 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [16] 韦中超, 戴峭峰, 汪河洲. 毛细管中柱对称类面心结构胶体晶体的光谱特性. 物理学报, 2006, 55(2): 733-736. doi: 10.7498/aps.55.733
    [17] 潘杰勇, 梁冠全, 毛卫东, 汪河洲. 一类粗锐复合结构光子晶体的完全带隙研究. 物理学报, 2006, 55(2): 729-732. doi: 10.7498/aps.55.729
    [18] 刘小良, 徐 慧, 马松山, 宋招权. 一维无序二元固体中电子局域性质的研究. 物理学报, 2006, 55(6): 2949-2954. doi: 10.7498/aps.55.2949
    [19] 许兴胜, 陈弘达, 张道中. 非晶光子晶体中的光子局域化. 物理学报, 2006, 55(12): 6430-6434. doi: 10.7498/aps.55.6430
    [20] 冯立娟, 江海涛, 李宏强, 张冶文, 陈 鸿. 光子晶体耦合腔波导的色散特性. 物理学报, 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
计量
  • 文章访问数:  6082
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-29
  • 修回日期:  2015-04-14
  • 刊出日期:  2015-09-05

/

返回文章
返回