搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共轭聚合物链中光激发过程的无序效应

傅聪 叶梦浩 赵晖 陈宇光 鄢永红

引用本文:
Citation:

共轭聚合物链中光激发过程的无序效应

傅聪, 叶梦浩, 赵晖, 陈宇光, 鄢永红

Effects of intrachain disorder on photoexcitation in conjugated polymer chains

Fu Cong, Ye Meng-Hao, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong
PDF
HTML
导出引用
  • 应用包含链内无序和电子关联的Su-Schriffer-Heeger模型, 研究了共轭聚合物链中无序效应在光激发演化过程中的作用, 尤其是对激子产率的影响. 采用multi-configurational time-dependent Hartree–Fock方法处理电子部分的含时Schrödinger方程, 而晶格部分的运动则由经典的牛顿方程决定. 研究发现, 加入无序后, 光激发弛豫后的产物与纯净聚合物链中有着定性的不同. 相比于纯净聚合物中光激发下会有一定的概率直接生成极化子对, 考虑无序效应后则更趋向于生成激子, 并且激子的产率很大程度上依赖于无序的类型和强度. 另外还研究了电子-电子相互作用和共轭链长度对激子产率的影响.
    The luminescence efficiency of conjugated polymers has been a central topic in the study of light emitting. The effect of disorder plays an important role in generating excitons after the conjugated polymers have been excited by photons. In this paper, by using the Su-Schriffer-Heeger model, which has been modified to include intrachain disorder and electron correlation, we investigate the effects of disorder on the photoexcitation, especially on the yield of excitons in a conjugated polymer chain. We adopt the multi-configurational time-dependent Hartree–Fock method to solve the multi-electron time-dependent Schrödinger equation and the Newtonian equation of motion for the lattice vibration. The results show that after the photoexcitation relaxation process, the products of the disordered polymer chain are qualitatively distinct from those of the pure polymer chain. While the pairs of polarons can be generated directly after the photoexcitation in a pure polymer chain, the disorder favors excitons as the products of the photoexcitation, and the yield of excitons depends crucially on the kind and strength of the disorder. Furthermore, the influences of the electron correlation and the conjugation length on the yield of excitons are also discussed. Specifically, we find that in the case of diagonal disorder, when the conjugation length is short and the diagonal disorder is weak, the excitons are mainly generated by the recombination of two lattice defects with a high yield of excitons which will be reduced as the conjugation length increases. The excitons tend to be generated directly with a low yield of excitons which is enlarged as the disorder gets stronger when the conjugation length is long or the diagonal disorder is strong. The on-site Coulomb repulsion favors the generation of excitons as well. The case of off-diagonal disorder is similar to that of diagonal disorder except that the on-site Coulomb potential favors the generation of excitons in the weak disorder regime but depresses the generation of excitons in the strong disorder regime. When both diagonal and off-diagonal disorders are considered, the yield of excitons is dominated by the off-diagonal disorder. We hope that our investigations can provide useful guidance and help for designing organic photoelectric materials and devices.
      通信作者: 赵晖, zhaoh@fudan.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11474218, 11575116)资助的课题
      Corresponding author: Zhao Hui, zhaoh@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474218, 11575116)
    [1]

    Shirakawa H, Louis E J, MacDiarmid A G, Chiang C K, Heeger A J 1977 J. Chem. Soc. Chem. Commun. 16 578

    [2]

    Heeger A J 2001 Rev. Mod. Phys. 73 681Google Scholar

    [3]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Dos Bradley D C, Santos D A D, Brédas J L, Lögdlund M, Salaneck W R 1999 Nature 397 121Google Scholar

    [4]

    Dodabalapur A, Katz H E, Torsi L, Haddon R C 1995 Science 269 1560Google Scholar

    [5]

    Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J 1995 Science 270 1789Google Scholar

    [6]

    Onsager L 1938 Phys. Rev. 54 554Google Scholar

    [7]

    Scher H, Rackovsky S 1984 J. Chem. Phys. 81 1994Google Scholar

    [8]

    Leng J M, Jeglinski S, Wei X, Benner R E, Vardeny Z V, Guo F, Mazumdar S 1994 Phys. Rev. Lett. 72 156Google Scholar

    [9]

    Kersting R, Lemmer U, Deussen M, Bakker H J, Mahrt R F, Kurz H, Arkhipov V I, Bässler H, Göbel E O 1994 Phys. Rev. Lett. 73 1440Google Scholar

    [10]

    Barth S, Bässler H 1997 Phys. Rev. Lett. 79 4445Google Scholar

    [11]

    Graupner W, Cerullo G, Lanzani G, Nisoli M, List E J W, Leising G, De Silvestri S 1998 Phys. Rev. Lett. 81 3259Google Scholar

    [12]

    Clarke T M, Durrant J R 2010 Chem. Rev. 110 6736Google Scholar

    [13]

    Sariciftci N S 1998 Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model (Singapore: World Scientific) pp20−50

    [14]

    Moses D, Okumoto H, Lee C H, Heeger A J, Ohnishi T, Noguchi T 1996 Phys. Rev. B 54 4748

    [15]

    Moses D, Dogariu A, Heeger A J 2000 Chem. Phys. Lett. 316 356Google Scholar

    [16]

    Ruseckas A, Theander M, Andersson M R, Svensson M, Prato M, Inganäs O, Sundström V 2000 Chem. Phys. Lett. 322 136Google Scholar

    [17]

    Miranda P B, Moses D, Heeger A J 2001 Phys. Rev. B 64 081201(RGoogle Scholar

    [18]

    Moses D, Dogariu A, Heeger A J 2000 Phys. Rev. B 61 9373Google Scholar

    [19]

    De Sio A, Troiani F, Maiuri M, Réhault J, Sommer E, Lim J, Huelga S F, Plenio M B, Rozzi C A, Cerullo G, Molinari E, Lienau C 2016 Nat. Comm. 7 13742Google Scholar

    [20]

    Wang R, Yao Y, Zhang C F, Zhang Y D, Bin H J, Xue L W, Zhang Z G, Xie X Y, Ma H B, Wang X Y, Li Y F, Xiao M 2019 Nat. Commun. 10 398Google Scholar

    [21]

    Dong Y F, Nikolis V C, Talnack F, Chin Y C, Benduhn J, Londi G, Kublitski J, Zheng X J, Mannsfeld S C B, Spoltore D, Muccioli L, Li J, Blase X, Beljonne D, Kim J S, Bakulin A A, D′Avino G, Durrant J R, Vandewal K 2020 Nat. Commun. 11 4617Google Scholar

    [22]

    An Z, Wu C Q, Sun X 2004 Phys. Rev. Lett. 93 216407Google Scholar

    [23]

    Jaiswal M, Menon R 2006 Polym. Int. 55 1371Google Scholar

    [24]

    Coropceanu V, Cornil J, da Silva Filho D A, Olivier Y, Silbey R, Brédas J L 2007 Chem. Rev. 107 926Google Scholar

    [25]

    Shinar J, Shinar R 2008 J. Phys. D: Appl. Phys. 41 133001Google Scholar

    [26]

    Wang Y D, Zhang X G, Meng Y, Di B, Zhang Y L, An Z 2017 Org. Electron. 49 286Google Scholar

    [27]

    Sun Z, Li S, Xie S J, An Z 2019 J. Chem. Phys. C 123 21336Google Scholar

    [28]

    Menon A, Dong H P, Niazimbetova Z I, Rothberg L J, Galvin M E 2002 Chem. Mater. 14 3668Google Scholar

    [29]

    Konezny S J, Rothberg L J, Galvin M E, Smith D L 2010 Appl. Phys. Lett. 97 143305Google Scholar

    [30]

    Yuan X J, Dong X F, Li D M, Liu D S 2011 J. Chem. Phys. 134 244901Google Scholar

    [31]

    Yuan X J, Li D M, Yin S, Gao K, Cui B, Liu D S 2012 Org. Electron. 13 2094Google Scholar

    [32]

    Sariciftci N S, Heeger A J 1997 Handbook Organic Conductive Molecules Polymers (New York: Wiley) pp413–455

    [33]

    Li X X, Hou D, Chen G 2018 Org. Electron. 54 245Google Scholar

    [34]

    Wang Y D, Liu J J, Wang X R, Di B, Meng Y 2018 Europhys. Lett. 123 37003Google Scholar

    [35]

    Miranda R P, Fisher A J, Stella L, Horsfield A P 2011 J. Chem. Phys. 134 244101Google Scholar

    [36]

    Miranda R P, Fisher A J, Stella L, Horsfield A P 2011 J. Chem. Phys. 134 244102Google Scholar

    [37]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [38]

    Su W P, Schrieffer J R, Heeger A J 1980 Phys. Rev. B 22 2099Google Scholar

    [39]

    Brazovskii S A, Kirova N N 1981 Sov. Phys. JETP Lett. 33 4

    [40]

    Heeger A J, Kivelson S, Schrieffer J R, Su W P 1988 Rev. Mod. Phys. 60 781Google Scholar

    [41]

    Meng Y, Liu X J, Di B, An Z 2009 J. Chem. Phys. 131 244502Google Scholar

    [42]

    Sun Z, Li Y, Xie S J, An Z, Liu D S 2009 Phys. Rev. B 79 201310(RGoogle Scholar

    [43]

    Sun Z, Li Y, Gao K, Liu D S, An Z, Xie S J 2010 Org. Electron. 11 279Google Scholar

  • 图 1  加入对角无序后, 电子$ \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $激发后晶格交错序参量$ \delta_i = (-1)^i(u_{i+1}-u_i)/2 $随时间的演化 (a) $ L = 64, \; \sigma_\varepsilon = 0.01 $ eV; (b) $ L = 128, \; \sigma_\varepsilon = 0.10 $ eV, 插图显示了$ \varepsilon_2^{\rm v} $上一个电子激发到导带$ \varepsilon_2^{\rm c} $后, 电子初始占据状态的示意图

    Fig. 1.  Dynamical evolution of the staggered bond order parameter $ \delta_{i} = (-1)^{i}(u_{i+1}-u_{i})/2 $ with time for photoexcitation $ \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $: (a) $ L = 64, \; \sigma_\varepsilon = 0.01 $ eV; (b) $ L = 128, \; \sigma_\varepsilon = 0.10 $ eV. The inset shows the initial electronic levels for a photoexcitation process of $ \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $.

    图 2  激子的产率在不同链长和电子关联下随着对角无序强度的变化 (a) $ L = 64, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (b) $ L = 96, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (c) $L = $$ 128, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c}$; (d) $ L = 64, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (e) $ L = 96, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (f) $ L = 128, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $

    Fig. 2.  Dependence of the yield of the exciton on the strength of diagonal disorder: (a) $ L = 64, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (b) $ L = 96, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (c) $ L = 128, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (d) $ L = 64, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (e) $ L = 96, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (f) $ L = 128, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $.

    图 3  激子的产率在不同链长和电子关联下随着非对角无序强度的变化 (a) $ L = 64, \; \varepsilon_2^{\upsilon}\rightarrow\varepsilon_2^c $; (b) $ L = 96, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (c) $L = 128, $$ \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c}$; (d) $ L = 64, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (e) $ L = 96, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (f) $ L = 128, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $

    Fig. 3.  Dependence of the yield of the exciton on the strength of off-diagonal disorder: (a) $ L = 64, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (b) $L = $$ 96, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c}$; (c) $ L = 128, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (d) $ L = 64, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (e) $ L = 96, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (f) $ L = 128, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $.

    图 4  两种无序同时存在时, 激子的产率在不同链长和电子关联下随着无序强度的变化 (a) $ L = 64, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (b) $L = 96, $$ \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c}$; (c) $ L = 128, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (d) $ L = 64, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (e) $ L = 96, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (f) $ L = 128, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $

    Fig. 4.  Dependence of the yield of the exciton on the strength of both diagonal and off-diagonal disorder: (a) $ L = 64, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (b) $ L = 96, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (c) $ L = 128, \; \varepsilon_2^{\rm v}\rightarrow\varepsilon_2^{\rm c} $; (d) $ L = 64, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (e) $ L = 96, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c} $; (f) $L = 128, \; \varepsilon_4^{\rm v}\rightarrow\varepsilon_4^{\rm c}$.

  • [1]

    Shirakawa H, Louis E J, MacDiarmid A G, Chiang C K, Heeger A J 1977 J. Chem. Soc. Chem. Commun. 16 578

    [2]

    Heeger A J 2001 Rev. Mod. Phys. 73 681Google Scholar

    [3]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Dos Bradley D C, Santos D A D, Brédas J L, Lögdlund M, Salaneck W R 1999 Nature 397 121Google Scholar

    [4]

    Dodabalapur A, Katz H E, Torsi L, Haddon R C 1995 Science 269 1560Google Scholar

    [5]

    Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J 1995 Science 270 1789Google Scholar

    [6]

    Onsager L 1938 Phys. Rev. 54 554Google Scholar

    [7]

    Scher H, Rackovsky S 1984 J. Chem. Phys. 81 1994Google Scholar

    [8]

    Leng J M, Jeglinski S, Wei X, Benner R E, Vardeny Z V, Guo F, Mazumdar S 1994 Phys. Rev. Lett. 72 156Google Scholar

    [9]

    Kersting R, Lemmer U, Deussen M, Bakker H J, Mahrt R F, Kurz H, Arkhipov V I, Bässler H, Göbel E O 1994 Phys. Rev. Lett. 73 1440Google Scholar

    [10]

    Barth S, Bässler H 1997 Phys. Rev. Lett. 79 4445Google Scholar

    [11]

    Graupner W, Cerullo G, Lanzani G, Nisoli M, List E J W, Leising G, De Silvestri S 1998 Phys. Rev. Lett. 81 3259Google Scholar

    [12]

    Clarke T M, Durrant J R 2010 Chem. Rev. 110 6736Google Scholar

    [13]

    Sariciftci N S 1998 Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model (Singapore: World Scientific) pp20−50

    [14]

    Moses D, Okumoto H, Lee C H, Heeger A J, Ohnishi T, Noguchi T 1996 Phys. Rev. B 54 4748

    [15]

    Moses D, Dogariu A, Heeger A J 2000 Chem. Phys. Lett. 316 356Google Scholar

    [16]

    Ruseckas A, Theander M, Andersson M R, Svensson M, Prato M, Inganäs O, Sundström V 2000 Chem. Phys. Lett. 322 136Google Scholar

    [17]

    Miranda P B, Moses D, Heeger A J 2001 Phys. Rev. B 64 081201(RGoogle Scholar

    [18]

    Moses D, Dogariu A, Heeger A J 2000 Phys. Rev. B 61 9373Google Scholar

    [19]

    De Sio A, Troiani F, Maiuri M, Réhault J, Sommer E, Lim J, Huelga S F, Plenio M B, Rozzi C A, Cerullo G, Molinari E, Lienau C 2016 Nat. Comm. 7 13742Google Scholar

    [20]

    Wang R, Yao Y, Zhang C F, Zhang Y D, Bin H J, Xue L W, Zhang Z G, Xie X Y, Ma H B, Wang X Y, Li Y F, Xiao M 2019 Nat. Commun. 10 398Google Scholar

    [21]

    Dong Y F, Nikolis V C, Talnack F, Chin Y C, Benduhn J, Londi G, Kublitski J, Zheng X J, Mannsfeld S C B, Spoltore D, Muccioli L, Li J, Blase X, Beljonne D, Kim J S, Bakulin A A, D′Avino G, Durrant J R, Vandewal K 2020 Nat. Commun. 11 4617Google Scholar

    [22]

    An Z, Wu C Q, Sun X 2004 Phys. Rev. Lett. 93 216407Google Scholar

    [23]

    Jaiswal M, Menon R 2006 Polym. Int. 55 1371Google Scholar

    [24]

    Coropceanu V, Cornil J, da Silva Filho D A, Olivier Y, Silbey R, Brédas J L 2007 Chem. Rev. 107 926Google Scholar

    [25]

    Shinar J, Shinar R 2008 J. Phys. D: Appl. Phys. 41 133001Google Scholar

    [26]

    Wang Y D, Zhang X G, Meng Y, Di B, Zhang Y L, An Z 2017 Org. Electron. 49 286Google Scholar

    [27]

    Sun Z, Li S, Xie S J, An Z 2019 J. Chem. Phys. C 123 21336Google Scholar

    [28]

    Menon A, Dong H P, Niazimbetova Z I, Rothberg L J, Galvin M E 2002 Chem. Mater. 14 3668Google Scholar

    [29]

    Konezny S J, Rothberg L J, Galvin M E, Smith D L 2010 Appl. Phys. Lett. 97 143305Google Scholar

    [30]

    Yuan X J, Dong X F, Li D M, Liu D S 2011 J. Chem. Phys. 134 244901Google Scholar

    [31]

    Yuan X J, Li D M, Yin S, Gao K, Cui B, Liu D S 2012 Org. Electron. 13 2094Google Scholar

    [32]

    Sariciftci N S, Heeger A J 1997 Handbook Organic Conductive Molecules Polymers (New York: Wiley) pp413–455

    [33]

    Li X X, Hou D, Chen G 2018 Org. Electron. 54 245Google Scholar

    [34]

    Wang Y D, Liu J J, Wang X R, Di B, Meng Y 2018 Europhys. Lett. 123 37003Google Scholar

    [35]

    Miranda R P, Fisher A J, Stella L, Horsfield A P 2011 J. Chem. Phys. 134 244101Google Scholar

    [36]

    Miranda R P, Fisher A J, Stella L, Horsfield A P 2011 J. Chem. Phys. 134 244102Google Scholar

    [37]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [38]

    Su W P, Schrieffer J R, Heeger A J 1980 Phys. Rev. B 22 2099Google Scholar

    [39]

    Brazovskii S A, Kirova N N 1981 Sov. Phys. JETP Lett. 33 4

    [40]

    Heeger A J, Kivelson S, Schrieffer J R, Su W P 1988 Rev. Mod. Phys. 60 781Google Scholar

    [41]

    Meng Y, Liu X J, Di B, An Z 2009 J. Chem. Phys. 131 244502Google Scholar

    [42]

    Sun Z, Li Y, Xie S J, An Z, Liu D S 2009 Phys. Rev. B 79 201310(RGoogle Scholar

    [43]

    Sun Z, Li Y, Gao K, Liu D S, An Z, Xie S J 2010 Org. Electron. 11 279Google Scholar

  • [1] 石莹, 李耀, 周海涛, 陈瑞云, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂. 一种共轭聚合物单分子发色团吸收和发射特性动态演变过程的实时测量. 物理学报, 2019, 68(4): 048201. doi: 10.7498/aps.68.20181986
    [2] 邹双阳, Muhammad Arshad Kamran, 杨高岭, 刘瑞斌, 石丽洁, 张用友, 贾宝华, 钟海政, 邹炳锁. II-VI族稀磁半导体微纳结构中的激子磁极化子及其发光. 物理学报, 2019, 68(1): 017101. doi: 10.7498/aps.68.20181211
    [3] 秦亚强, 陈瑞云, 石莹, 周海涛, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂. 共轭聚合物单分子构象和能量转移特性研究. 物理学报, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [4] 刘俊娟, 魏增江, 常虹, 张亚琳, 邸冰. 杂质离子对有机共轭聚合物中极化子动力学性质的影响. 物理学报, 2016, 65(6): 067202. doi: 10.7498/aps.65.067202
    [5] 刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超. 金属氧化物基杂化型聚合物太阳电池研究. 物理学报, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [6] 王文静, 孟瑞璇, 李元, 高琨. 共轭聚合物中受激吸收与受激辐射的量子动力学研究. 物理学报, 2014, 63(19): 197901. doi: 10.7498/aps.63.197901
    [7] 武振华, 李华, 严亮星, 刘炳灿, 田强. 分数维方法研究GaAs薄膜中的极化子. 物理学报, 2013, 62(9): 097302. doi: 10.7498/aps.62.097302
    [8] 邸冰, 王亚东, 张亚琳. 链间耦合对极化子非弹性散射性质的影响. 物理学报, 2013, 62(10): 107202. doi: 10.7498/aps.62.107202
    [9] 李冬梅, 袁晓娟, 周加强. 共轭聚合物中链内无序效应对极化子输运的影响. 物理学报, 2013, 62(16): 167202. doi: 10.7498/aps.62.167202
    [10] 伊丁, 秦伟, 解士杰. 钙钛矿锰氧化物中的极化子研究. 物理学报, 2012, 61(20): 207101. doi: 10.7498/aps.61.207101
    [11] 牛巧利, 章勇, 范广涵. 高效率共轭聚合物主体绿光磷光发光二极管. 物理学报, 2009, 58(12): 8630-8634. doi: 10.7498/aps.58.8630
    [12] 彭瑞祥, 陈冲, 沈薇, 王命泰, 郭颖, 耿宏伟. 非晶/结晶共混对聚合物光伏电池性能的影响. 物理学报, 2009, 58(9): 6582-6589. doi: 10.7498/aps.58.6582
    [13] 史晶, 高琨, 雷杰, 解士杰. 基态非简并导电聚合物——坐标空间研究. 物理学报, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [14] 孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰. 高聚物中极化子和三重态激子的碰撞过程研究. 物理学报, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [15] 赵凤岐, 周炳卿. 外电场作用下纤锌矿氮化物抛物量子阱中极化子能级. 物理学报, 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
    [16] 任俊峰, 付吉永, 刘德胜, 解士杰. 自旋注入有机物的扩散理论. 物理学报, 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [17] 王鹿霞, 张大成, 刘德胜, 韩圣浩, 解士杰. 基态非简并聚合物中的极化子和双极化子动力学. 物理学报, 2003, 52(10): 2547-2552. doi: 10.7498/aps.52.2547
    [18] 封伟, 曹猛, 韦玮, 吴洪才, 万梅香, 吉野胜美. 有机聚合物受体给体复合体薄膜光伏电池性能研究. 物理学报, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [19] 陈 科, 赵二海, 孙 鑫, 付柔励. 高分子中激子和双激子的极化率(解析计算). 物理学报, 2000, 49(9): 1778-1785. doi: 10.7498/aps.49.1778
    [20] 魏建华, 解士杰, 梅良模. 混合卤化物中的极化子与双极化子. 物理学报, 2000, 49(11): 2264-2270. doi: 10.7498/aps.49.2264
计量
  • 文章访问数:  4272
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 修回日期:  2021-01-15
  • 上网日期:  2021-05-20
  • 刊出日期:  2021-06-05

/

返回文章
返回