搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿锰氧化物中的极化子研究

伊丁 秦伟 解士杰

引用本文:
Citation:

钙钛矿锰氧化物中的极化子研究

伊丁, 秦伟, 解士杰

Investigation of polarons in perovskite manganites

Yi Ding, Qin Wei, Xie Shi-Jie
PDF
导出引用
  • 钙钛矿锰氧化物(以下简称锰氧化物, 如La1-xSrxMnO3等, x为掺杂浓度)因其优异的电、磁性质受到人们广泛的关注, 但是对于其材料内部载流子性质的认识至今仍没有统一定论. 本文基于锰氧化物内Mn-O链的特点, 建立一维紧束缚模型, 对锰氧化物载流子的性质展开研究. 发现在掺杂浓度x=0.5时, 系统处于铁磁态, 自旋能级完全劈裂, 价带和导带之间存在带隙, 所有电子态呈现扩展行为. 进一步掺杂, 将出现局域电子态, 同时伴随着晶格的局域畸变, 形成所谓的极化子. 伴随着极化子的出现, 带隙中出现极化子深能级. 极化子携带的电荷量越多, 形成的晶格缺陷越深, 局域能级也越深. 当极化子的电荷量继续增加时, 极化子解离, 载流子倾向于形成能量更低的正反"孤子"对.
    Perovskite manganites have aroused a great interest in their outstanding electrical and magnetic properties, but the characteristics of carriers in these materials are still under debate. According to the Mn-O chain, we build a one-dimensional tight-binding model to study the characteristics of charge carriers in manganites. It is obtained that at doping concentration x=0.5, the system shows a ferromagnetic state and the energy bands of spin up and spin down are completely splitted. A gap exists between valence band and conduction band, and all the electronic states are extended. With further doping, a localized electronic state appears, which we call a polaron. Accompanied with the electronic state, local distortions of the lattice and deep levels appear in the gap. The depth of the polaron increases with the doping quantity of electrons. It is also found that the polaron is spin polarized and has a maximum electronic charge of 0.621 e in the present parameters, beyond which the polaron will be divided into two separate states called solitons.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2010CB923402, 2009CB929204)和国家自然科学基金(批准号: 11174181, 21161160445)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB923402, 2009CB929204) and the National Natural Science Foundation of China (Grant Nos. 11174181, 21161160445).
    [1]

    Jonker G H, van Santen J H 1950 Physica 16 337

    [2]

    Wollan E O, Koehler W C 1955 Phys. Rev. 100 545

    [3]

    Chahara K, Ohno T, Kasai M, Kozono Y 1993 Appl. Phys. Lett. 63 1990

    [4]

    von Helmolt R, Wecker J, Holzapfel B, Schultz L, Samwer K 1993 Phys. Rev. Lett. 71 2331

    [5]

    Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R, Venkatesan T 1998 Nature 392 794

    [6]

    Ravindran P, Kjekshus A, Fjellvåg H, Delin A, Eriksson O 2002 Phys. Rev. B 65 064445

    [7]

    Hartinger Ch, Mayr F, Loidl A, Kopp T 2006 Phys. Rev. B 73 024408

    [8]

    Millis A J 1998 Nature 392 147

    [9]

    Chen Y, Ueland B G, Lynn J W, Bychkov G L, Barilo S N, Mukovskii Y M 2008 Phys. Rev. B 78 212301

    [10]

    Yoon S, Liu H L, Schollerer G, Cooper S L, Han P D, Payne D A, Cheong S W, Fisk Z 1998 Phys. Rev. B 58 2795

    [11]

    Lanzara A, Saini N L, Brunelli M, Natali F, Bianconi A, Radaelli P G, Cheong S W 1998 Phys. Rev. Lett. 81 878

    [12]

    Xie S J, Ahn K H, Smith D L, Bishop A R, Saxena A 2003 Phys. Rev. B 67 125202

    [13]

    Rościszewski K, Oleś A M 2007 J. Phys.: Condens. Matter 19 186223

    [14]

    Weber F, Aliouane N, Zheng H, Mitchell J F, Argyriou D N, Reznik D 2009 Nat. Mater. 8 798

    [15]

    Kida N, Tonouchi M 2002 Phys. Rev. B 66 024401

    [16]

    Barone P, Picozzi S, van den Brink J 2011 Phys. Rev. B 83 233103

    [17]

    van den Brink J, Khaliullin G, Khomskii D 1999 Phys. Rev. Lett. 83 5118

    [18]

    Sboychakov A O, Kugel K I, Rakhmanov A L, Khomskii D I 2011 Phys. Rev. B 83 205123

    [19]

    Ahn K H, Millis A J 2000 Phys. Rev. B 61 13545

    [20]

    Hotta T, Takada Y, Koizumi H, Dagotto E 2000 Phys. Rev. Lett. 84 2477

    [21]

    Salamon M B, Jaime M 2001 Rev. Mod. Phys. 73 583

    [22]

    Kraus R, Schrade M, Schuster R, Knupfer M, Revcolevschi A, Büchner B, Geck J 2011 Phys. Rev. B 83 165130

  • [1]

    Jonker G H, van Santen J H 1950 Physica 16 337

    [2]

    Wollan E O, Koehler W C 1955 Phys. Rev. 100 545

    [3]

    Chahara K, Ohno T, Kasai M, Kozono Y 1993 Appl. Phys. Lett. 63 1990

    [4]

    von Helmolt R, Wecker J, Holzapfel B, Schultz L, Samwer K 1993 Phys. Rev. Lett. 71 2331

    [5]

    Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R, Venkatesan T 1998 Nature 392 794

    [6]

    Ravindran P, Kjekshus A, Fjellvåg H, Delin A, Eriksson O 2002 Phys. Rev. B 65 064445

    [7]

    Hartinger Ch, Mayr F, Loidl A, Kopp T 2006 Phys. Rev. B 73 024408

    [8]

    Millis A J 1998 Nature 392 147

    [9]

    Chen Y, Ueland B G, Lynn J W, Bychkov G L, Barilo S N, Mukovskii Y M 2008 Phys. Rev. B 78 212301

    [10]

    Yoon S, Liu H L, Schollerer G, Cooper S L, Han P D, Payne D A, Cheong S W, Fisk Z 1998 Phys. Rev. B 58 2795

    [11]

    Lanzara A, Saini N L, Brunelli M, Natali F, Bianconi A, Radaelli P G, Cheong S W 1998 Phys. Rev. Lett. 81 878

    [12]

    Xie S J, Ahn K H, Smith D L, Bishop A R, Saxena A 2003 Phys. Rev. B 67 125202

    [13]

    Rościszewski K, Oleś A M 2007 J. Phys.: Condens. Matter 19 186223

    [14]

    Weber F, Aliouane N, Zheng H, Mitchell J F, Argyriou D N, Reznik D 2009 Nat. Mater. 8 798

    [15]

    Kida N, Tonouchi M 2002 Phys. Rev. B 66 024401

    [16]

    Barone P, Picozzi S, van den Brink J 2011 Phys. Rev. B 83 233103

    [17]

    van den Brink J, Khaliullin G, Khomskii D 1999 Phys. Rev. Lett. 83 5118

    [18]

    Sboychakov A O, Kugel K I, Rakhmanov A L, Khomskii D I 2011 Phys. Rev. B 83 205123

    [19]

    Ahn K H, Millis A J 2000 Phys. Rev. B 61 13545

    [20]

    Hotta T, Takada Y, Koizumi H, Dagotto E 2000 Phys. Rev. Lett. 84 2477

    [21]

    Salamon M B, Jaime M 2001 Rev. Mod. Phys. 73 583

    [22]

    Kraus R, Schrade M, Schuster R, Knupfer M, Revcolevschi A, Büchner B, Geck J 2011 Phys. Rev. B 83 165130

  • [1] 陈礼元, 高超, 林机, 李慧军. \begin{document}$ {\cal{PT}}$\end{document}对称极化子凝聚体系统中的稳定孤子及其调控. 物理学报, 2022, 71(18): 181101. doi: 10.7498/aps.71.20220475
    [2] 傅聪, 叶梦浩, 赵晖, 陈宇光, 鄢永红. 共轭聚合物链中光激发过程的无序效应. 物理学报, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [3] 王建元, 白健英, 罗炳成, 王拴虎, 金克新, 陈长乐. BaTiO3/La0.67Sr0.33MnO3-复合薄膜的磁致电极化和磁介电特性研究. 物理学报, 2018, 67(1): 017701. doi: 10.7498/aps.67.20172019
    [4] 刘俊娟, 魏增江, 常虹, 张亚琳, 邸冰. 杂质离子对有机共轭聚合物中极化子动力学性质的影响. 物理学报, 2016, 65(6): 067202. doi: 10.7498/aps.65.067202
    [5] 赵翠兰, 王丽丽, 赵丽丽. 有限深抛物势量子盘中极化子的激发态性质. 物理学报, 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [6] 武振华, 李华, 严亮星, 刘炳灿, 田强. 分数维方法研究GaAs薄膜中的极化子. 物理学报, 2013, 62(9): 097302. doi: 10.7498/aps.62.097302
    [7] 王启文, 红兰. 二维量子点中极化子的自旋弛豫. 物理学报, 2012, 61(1): 017107. doi: 10.7498/aps.61.017107
    [8] 赵翠兰, 丛银川. 球壳量子点中极化子和量子比特的声子效应. 物理学报, 2012, 61(18): 186301. doi: 10.7498/aps.61.186301
    [9] 任学藻, 贺树, 丛红璐, 王旭文. 两格点两电子Hubbard-Holstein模型极化子的量子纠缠特性. 物理学报, 2012, 61(12): 124207. doi: 10.7498/aps.61.124207
    [10] 赵翠兰, 高宽云. 声子和磁场对量子环中极化子性质的影响. 物理学报, 2010, 59(7): 4857-4862. doi: 10.7498/aps.59.4857
    [11] 史晶, 高琨, 雷杰, 解士杰. 基态非简并导电聚合物——坐标空间研究. 物理学报, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [12] 羊新胜, 赵 勇. 铁磁性锰氧化物掺杂的ZnO压敏电阻性能研究. 物理学报, 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [13] 张 耘. 极化子荧光及其断层扫描对Ti:LiNbO3光波导表征研究. 物理学报, 2007, 56(1): 280-284. doi: 10.7498/aps.56.280
    [14] 赵凤岐, 周炳卿. 外电场作用下纤锌矿氮化物抛物量子阱中极化子能级. 物理学报, 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
    [15] 任学藻, 廖 旭, 刘 涛, 汪克林. 电子与双声子相互作用对Holstein极化子的影响. 物理学报, 2006, 55(6): 2865-2870. doi: 10.7498/aps.55.2865
    [16] 任俊峰, 付吉永, 刘德胜, 解士杰. 自旋注入有机物的扩散理论. 物理学报, 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [17] 束正煌, 董锦明. 轨道序对半掺杂锰氧化物光学性质的影响. 物理学报, 2003, 52(11): 2918-2922. doi: 10.7498/aps.52.2918
    [18] 王鹿霞, 张大成, 刘德胜, 韩圣浩, 解士杰. 基态非简并聚合物中的极化子和双极化子动力学. 物理学报, 2003, 52(10): 2547-2552. doi: 10.7498/aps.52.2547
    [19] 贾武林, 吴永坚, 安忠, 吴长勤. 苯基取代聚乙炔中的元激发. 物理学报, 2002, 51(11): 2595-2601. doi: 10.7498/aps.51.2595
    [20] 魏建华, 解士杰, 梅良模. 混合卤化物中的极化子与双极化子. 物理学报, 2000, 49(11): 2264-2270. doi: 10.7498/aps.49.2264
计量
  • 文章访问数:  5036
  • PDF下载量:  452
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-05
  • 修回日期:  2012-05-04
  • 刊出日期:  2012-10-05

钙钛矿锰氧化物中的极化子研究

  • 1. 山东大学物理学院, 晶体材料国家重点实验室, 济南 250100
    基金项目: 国家重点基础研究发展计划(批准号: 2010CB923402, 2009CB929204)和国家自然科学基金(批准号: 11174181, 21161160445)资助的课题.

摘要: 钙钛矿锰氧化物(以下简称锰氧化物, 如La1-xSrxMnO3等, x为掺杂浓度)因其优异的电、磁性质受到人们广泛的关注, 但是对于其材料内部载流子性质的认识至今仍没有统一定论. 本文基于锰氧化物内Mn-O链的特点, 建立一维紧束缚模型, 对锰氧化物载流子的性质展开研究. 发现在掺杂浓度x=0.5时, 系统处于铁磁态, 自旋能级完全劈裂, 价带和导带之间存在带隙, 所有电子态呈现扩展行为. 进一步掺杂, 将出现局域电子态, 同时伴随着晶格的局域畸变, 形成所谓的极化子. 伴随着极化子的出现, 带隙中出现极化子深能级. 极化子携带的电荷量越多, 形成的晶格缺陷越深, 局域能级也越深. 当极化子的电荷量继续增加时, 极化子解离, 载流子倾向于形成能量更低的正反"孤子"对.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回