搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

$ {\cal{PT}}$对称极化子凝聚体系统中的稳定孤子及其调控

陈礼元 高超 林机 李慧军

引用本文:
Citation:

$ {\cal{PT}}$对称极化子凝聚体系统中的稳定孤子及其调控

陈礼元, 高超, 林机, 李慧军

Stable solitons and their controllability in $ {\cal{PT}}$ symmetrical polariton condensates

Chen Li-Yuan, Gao Chao, Lin Ji, Li Hui-Jun
PDF
HTML
导出引用
  • 通过构造外势与泵浦的空间分布, 设计了一维非相干泵浦激子极化凝聚体系统满足的$ {\cal{PT}} $对称模型. 在弱非线性效应情况下, 确定了体系的$ {\cal{PT}} $对称相变点, 展现了线性谱的特征. 在正常非线性效应情况下, 找到了零背景的亮孤子、零背景的多极暗孤子、非零背景的多极对称暗孤子、对称破缺暗孤子、非零背景的凹陷、凸起暗孤子, 并讨论了外势虚部与非均匀泵浦对孤子轮廓与孤子稳定性的影响. 通过分析孤子的轮廓与稳定性, 厘清了$ {\cal{PT}} $对称外势与非均匀泵浦之间的竞争关系, 给出激发各种亮、暗孤子的方案, 并界定了这些孤子的存在与稳定区域. 最后, 通过调制$ {\cal{PT}} $对称外势虚部实现了对$ {\cal{PT}} $对称破缺暗孤子的调控, 揭示了极化子凝聚体系统在全光开关等光信息处理方面的潜在应用.
    By constructing the spatial distribution of external potential and incoherent pumping, a $ {\cal{PT}} $ symmetrical model satisfied by the one-dimensional incoherent pumped exciton-polariton condensate system is designed. In the weakly nonlinear case, the $ {\cal{PT}} $ symmetrical phase transition point is found, and the linear spectrum is shown. In the normal nonlinear case, found are the bright soliton with the zero background, the multi-poles dark solitons with zero background, the symmetry breaking dark solitons and symmetrical dark soliton with the homogeneous background, and the dip- and hump-type dark solitons with the homogeneous background, and discussed are the effects of inhomogeneous pumping and the imaginary part of external potential on the profiles and the stability of solitons. Through these results, the competition between $ {\cal{PT}} $ symmetrical potential and the inhomogeneous pumping is understood, the scheme that how the bright and dark solitons are excited is presented, and the existence and stability regions of these solitons are determined. Finally, the symmetry breaking dark solitons are controlled by modulating the imaginary part of the $ {\cal{PT}} $ symmetrical potential, which reveals the potential applications of the polariton condensate system in optical information processing, such as the all-optical switches.
      通信作者: 李慧军, hjli@zjnu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074343, 11835011, 12074342)和浙江省自然科学基金(批准号: LZ22A050002, LY21A040004, LR22A040001)资助的课题
      Corresponding author: Li Hui-Jun, hjli@zjnu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074343, 11835011, 12074342) and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LZ22A050002, LY21A040004, LR22A040001)
    [1]

    Cao H, Wiersig J 2015 Rev. Mod. Phys. 87 61Google Scholar

    [2]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [3]

    Musslimani Z H, Makris K G, El G R, Christodoulides D N 2008 Phys. Rev. Lett. 100 030402Google Scholar

    [4]

    Rüter C, Makris K, El G R 2010 Nat. Phys. 6 192Google Scholar

    [5]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar

    [6]

    Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier R M, Aimez V, Sililoglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902Google Scholar

    [7]

    Feng L, Wong Z J, Ma R, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [8]

    Hodaei H, Miri M, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975Google Scholar

    [9]

    Regensburger A, Miri M, Bersch C, Näger J, Onishchukov G, Christodoulides D N, Peschel U 2013 Phys. Rev. Lett. 110 223902Google Scholar

    [10]

    Peng B, Özdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394Google Scholar

    [11]

    Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photonics 8 524Google Scholar

    [12]

    Ramezani H, Schindler J, Ellis F M, Gunther U, Kottos T 2012 Phys. Rev. A 85 062122Google Scholar

    [13]

    Lin Z, Schindler J, Ellis F M, Kottos T 2012 Phys. Rev. A 85 050101Google Scholar

    [14]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108Google Scholar

    [15]

    Sun Y, Tan W, Li H, Li J, Chen H 2014 Phys. Rev. Lett. 112 143903Google Scholar

    [16]

    Li J, Harter A K, Liu J, Melo L, Joglekar Y N, Luo L 2019 Nat. Commun. 10 1Google Scholar

    [17]

    Hang C, Huang G, Konotop V V 2013 Phys. Rev. Lett. 110 083604Google Scholar

    [18]

    Sheng J, Miri M, Christodoulides D N, Xiao M 2013 Phys. Rev. A 88 041803Google Scholar

    [19]

    Li H, Dou J, Huang G 2013 Opt. Express 21 32053Google Scholar

    [20]

    Wu J, Artoni M, Rocca G 2014 Phys. Rev. Lett. 113 123004Google Scholar

    [21]

    Zhang Z, Zhang Y, Sheng J, Yang L, Miri M, Christodoulides D N, He B, Zhang Y, Xiao M 2016 Phys. Rev. Lett. 117 123601Google Scholar

    [22]

    Makris K G, El-Ganainy R, Christodoulides D N, Musslimani Z H 2008 Phys. Rev. Lett. 100 103904Google Scholar

    [23]

    Sieberer L M, Buchhold M, Diehl S 2016 Rep. Prog. Phys. 79 096001Google Scholar

    [24]

    Wouters M, Carusotto I 2007 Phys. Rev. Lett. 99 140402Google Scholar

    [25]

    Szymanska M H, Keeling J, Littlewood P B 2006 Phys. Rev. Lett. 96 230602Google Scholar

    [26]

    Byrnes T, Kim N Y, Yamamoto Y 2014 Nat. Phys. 10 803Google Scholar

    [27]

    Anton C, Liew T C H, Cuadra J, Martin M D, Eldridge P S, Hatzopoulos Z, Stavrinidis G, Savvidis P G, Vina L 2013 Phys. Rev. B 88 245307Google Scholar

    [28]

    Smirnov L A, Smirnova D A, Ostrovskaya E A, Kivshar Y S 2014 Phys. Rev. B 89 235310Google Scholar

    [29]

    Xue Y, Matuszewski M 2014 Phys. Rev. Lett. 112 216401Google Scholar

    [30]

    Liew T C H, Egorov O A, Matuszewski M, Kyriienko O, Ma X, Ostrovskaya E A 2015 Phys. Rev. B 91 085413Google Scholar

    [31]

    Kol G R 2017 Opt. Quantum Electron. 49 385Google Scholar

    [32]

    Cheng S, Chen T 2018 Phys. Rev. E 97 032212Google Scholar

    [33]

    Yoon S, Sun M, Rubo Y G, Savenko I G 2019 Phys. Rev. A 100 023609Google Scholar

    [34]

    Opala A, Pieczarka M, Bobrovska N, Matuszewski M 2018 Phys. Rev. B 97 155304Google Scholar

    [35]

    Xue Y, Jiang Y, Wang G, Wang R, Feng S, Matuszewski M 2018 Opt. Express 26 6267Google Scholar

    [36]

    Sigurdsson H, Liew T C H, Shelykh I A 2017 Phys. Rev. B 96 205406Google Scholar

    [37]

    Ma X, Egorov O A, Schumacher S 2017 Phys. Rev. Lett. 118 157401Google Scholar

    [38]

    Pinsker F, Flayac H 2016 Proc. R. Soc. A 472 20150592Google Scholar

    [39]

    Kulczykowski M, Bobrovska N, Matuszewski M 2015 Phys. Rev. B 91 245310Google Scholar

    [40]

    Ma X, Schumacher S 2017 Phys. Rev. B 95 235301Google Scholar

    [41]

    Ostrovskaya E A, Abdullaev J, Desyatnikov A S, Fraser M D, Kivshar Y S 2012 Phys. Rev. A 86 013636Google Scholar

    [42]

    Tanese D, Flayac H, Solnyshkov D, Amo A, Lemaître A, Galopin E, Braive R, Senellart P, Sagnes I, Malpuech G, Bloch J 2013 Nat. Commun. 4 1749Google Scholar

    [43]

    Ostrovskaya E A, Abdullaev J, Fraser M D, Desyatnikov A S, Kivshar Y S 2013 Phys. Rev. Lett. 110 170407Google Scholar

    [44]

    Pinsker F, Flayac H 2014 Phys. Rev. Lett. 112 140405Google Scholar

    [45]

    Lien J, Chen Y, Ishida N, Chen H, Hwang C, Nori F 2015 Phys. Rev. B 91 024511Google Scholar

    [46]

    Chestnov I Y, Demirchyan S S, Alodjants A P, Rubo Y G, Kavokin A V 2016 Sci. Rep. 6 19551Google Scholar

    [47]

    Ma X K, Kartashov Y Y, Gao T, Schumacher S 2019 New J. Phys. 21 123008Google Scholar

    [48]

    Jia C Y, Liang Z X 2020 Chin. Phys. Lett. 37 040502Google Scholar

    [49]

    Zhang K, Wen W, Lin J, Li H 2021 New J. Phys. 23 033011Google Scholar

    [50]

    Yang J 2011 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadephia: PA: SIAM) p327

    [51]

    Carusotto I, Ciuti C 2013 Rev. Mod. Phys. 85 299Google Scholar

    [52]

    Zhang K, Liang Y, Lin J, Li H 2018 Phys. Rev. A 97 023844Google Scholar

    [53]

    Suchkov S V, Sukhorukov A A, Huang J H 2016 Laser Photonics Rev. 10 177Google Scholar

    [54]

    Konotop V V, Yang J K, Zezyulin D A 2016 Rev. Mod. Phys. 88 035002Google Scholar

    [55]

    Ozdemir S K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783Google Scholar

    [56]

    Rodislav D, Boris A M 2011 Opt. Lett. 36 4323Google Scholar

    [57]

    Yang J 2017 J. Opt. 19 054004Google Scholar

    [58]

    Akhmediev N, Ankiewicz A 2005 Dissipative Solitons (Berlin: Springer) pp1–17

    [59]

    Bludov Y V, Hang C, Huang G, Konotop V V 2014 Opt. Lett. 39 3382Google Scholar

    [60]

    Nixon S, Zhu Y, Yang J 2012 Opt. Lett. 37 4874Google Scholar

    [61]

    党婷婷, 王娟芬, 安亚东, 刘香莲, 张朝霞, 杨玲珍 2015 物理学报 64 064211Google Scholar

    Dang T T, Wang J F, An Y D, Liu X L, Zhang Z X, Yang L Z 2015 Acta Phys. Sin. 64 064211Google Scholar

  • 图 1  弱非线性激发的线性谱 (a) 参数取$ w=0.45 $, $ \xi_0=1 $, $ W=1 $$ {\cal{PT}} $对称外势的轮廓图; (b) 线性谱中的虚部最大值随W的变化曲线; (c) $ W=0.1 $和(d) $ W=0.9 $时的线性谱以及离散本征值对应本征函数的虚实部

    Fig. 1.  Linear spectrum of weakly nonlinear excitations: (a) Profile of $ {\cal{PT}} $ symmetrical potential. Here, $ w=0.45 $, $ \xi_0=1 $, and $ W=1 $; (b) Im$(\beta)_{{\rm{max}}}$ as a function of W; (c), (d) linear spectrum for $ W=0.1 $, $ W=0.9 $ and the discrete eigenvalues corresponding to the imaginary and real parts of the eigenfunction, respectively

    图 2  非均匀泵浦强度$ \sigma_8 < 0 $时的暗孤子解 (a)—(c)分别为暗孤子的功率、稳定性和增益耗散强度随$ \sigma_8 $ 的变化曲线; (d1)—(g1)是取图(a)—(c)中字母d—g相应的W$ \sigma_8 $时孤子的轮廓$ |\psi| $(红实线) 以及相位ϕ (蓝色点虚线)的图像; (d2)—(g2)是孤子演化的结果, 图中, 左侧是演化结果的投影, 右侧是特定时刻s的演化结果

    Fig. 2.  Dark solitons for inhomogeneous pumping $ \sigma_8 < 0 $: (a)–(c) Power, stability and total gain loss intensity curves of the dark solitons as a function of $ \sigma_8 $, respectively; (d1)–(g1) profiles of the dark solitons with different $ \sigma_8 $ and W marked by the letter d–g in the panels (a)–(c) respectively, the red solid line (blue dashed-dotted line) denotes the profile $ |\psi| $ (phase ϕ); (d2)–(g2) projections and profiles of the evolution results. In the left panels, the projections of the evolution are shown. The profiles and phases of evolution at the special time s marked by the green line of the left panels are shown in the right panels

    图 3  均匀泵浦情况下的暗孤子 (a)—(c)分别为孤子的功率、稳定性和增益耗散强度随W的变化曲线; (d1)—(f1)是取图(a)—(c)中字母d—f相应的W$ \sigma_8 $时孤子的轮廓$ |\psi| $(红实线) 和相位ϕ(蓝色点虚线) 的图像; (d2)—(f2)是孤子演化的结果, 图中, 左侧是演化结果的投影, 右侧是特定时刻s的演化结果

    Fig. 3.  Dark solitons for homogeneous pumping: (a)–(c) Power, stability and total gain loss intensity curves of the dark soliton as a function of W; (d1)–(f1) profiles of the dark soliton marked by the letter d–f in the panels (a)–(c) respectively, the red solid line (blue dashed-dotted line) denote the amplitude $ |\psi| $ (phase ϕ); (d2)–(f2) projections and profiles of the evolution results. In the left panels, the projections of the evolution are shown. The profiles and phases of evolution at the special time s marked by the green line of the left panels are shown in the right panels.

    图 4  非均匀泵浦$ \sigma_8 > 0 $时的亮孤子 (a)—(c)分别为亮孤子的功率、稳定性和增益损耗强度随$ \sigma_8 $的变化曲线; (d1)—(g1)是取图(a)—(c)中字母d—g相应的W$ \sigma_8 $时孤子的轮廓; (d2)—(g2) 是孤子演化的结果, 图中, 左侧是演化结果的投影, 右侧是特定时刻s的演化结果

    Fig. 4.  Bright solitons for inhomogeneous pumping $ \sigma_8 > 0 $: (a)–(c) Power, stability, and total gain loss intensity curves of the bright soliton as a function of $ \sigma_8 $; (d1)–(g1) profiles of the bright solitons marked by the letter d–g in the panels (a)–(c) respectively; (d2)–(g2) projections and profiles of the evolution results. In the left panel, the projections of the evolution results are shown. The profiles of evolution at the special times s marked by the green line of the left panels are shown in the right panels

    图 5  孤子类型与孤子稳定区域分布图 (a) 7种孤子在参数W$ \sigma_8 $区域的分布图; (b) 稳定孤子在参数W$ \sigma_8 $区域的分布图; (c)—(h) 图 (a), (b) 中字母c—h相应的不同参数所对应孤子的演化结果, 图中, 左侧是演化结果的投影, 右侧是特定时刻s孤子轮廓和相位的演化结果

    Fig. 5.  Phase diagram for soliton types and stability: (a) Phase diagram of seven types of solitons as the functions of W and $ \sigma_8 $; (b) phase diagram of stability regions for seven types of solitons; (c)–(h) projections and profiles of the evolution results of solitons marked by the letter c–h in the panels (a) and (b) respectively. In the left panels, the projections of the evolution are shown. The profiles and phases of evolution at the special time s marked by the green line of the left panels are shown in the right panels

    图 6  调控外势虚部时对称破缺孤子的演化结果 (a) $ W= $$ 0.4, \;\sigma_8=-0.5 $时暗孤子的演化结果; (b) $ W=0.52, \; \sigma_8= $$ -0.13 $时暗孤子的演化结果; (c) $\xi_0 = 3, \;W = 0.1, \;\sigma_8 = -0.5$时暗孤子的演化结果

    Fig. 6.  Evolution results of symmetry breaking solitons by controlling the imaginary part of $ {\cal{PT}} $ potential: (a) The evolution results of dark soliton with $ W=0.4, \;\sigma_8=-0.5 $; (b) the evolution results of dark soliton with $ W=0.52, $$ \sigma_8=-0.13 $; (c) the evolution results of dark soliton with $ \xi_0=3, \; W=0.1,\; \sigma_8=-0.5 $

  • [1]

    Cao H, Wiersig J 2015 Rev. Mod. Phys. 87 61Google Scholar

    [2]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [3]

    Musslimani Z H, Makris K G, El G R, Christodoulides D N 2008 Phys. Rev. Lett. 100 030402Google Scholar

    [4]

    Rüter C, Makris K, El G R 2010 Nat. Phys. 6 192Google Scholar

    [5]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar

    [6]

    Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier R M, Aimez V, Sililoglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902Google Scholar

    [7]

    Feng L, Wong Z J, Ma R, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [8]

    Hodaei H, Miri M, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975Google Scholar

    [9]

    Regensburger A, Miri M, Bersch C, Näger J, Onishchukov G, Christodoulides D N, Peschel U 2013 Phys. Rev. Lett. 110 223902Google Scholar

    [10]

    Peng B, Özdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394Google Scholar

    [11]

    Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photonics 8 524Google Scholar

    [12]

    Ramezani H, Schindler J, Ellis F M, Gunther U, Kottos T 2012 Phys. Rev. A 85 062122Google Scholar

    [13]

    Lin Z, Schindler J, Ellis F M, Kottos T 2012 Phys. Rev. A 85 050101Google Scholar

    [14]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108Google Scholar

    [15]

    Sun Y, Tan W, Li H, Li J, Chen H 2014 Phys. Rev. Lett. 112 143903Google Scholar

    [16]

    Li J, Harter A K, Liu J, Melo L, Joglekar Y N, Luo L 2019 Nat. Commun. 10 1Google Scholar

    [17]

    Hang C, Huang G, Konotop V V 2013 Phys. Rev. Lett. 110 083604Google Scholar

    [18]

    Sheng J, Miri M, Christodoulides D N, Xiao M 2013 Phys. Rev. A 88 041803Google Scholar

    [19]

    Li H, Dou J, Huang G 2013 Opt. Express 21 32053Google Scholar

    [20]

    Wu J, Artoni M, Rocca G 2014 Phys. Rev. Lett. 113 123004Google Scholar

    [21]

    Zhang Z, Zhang Y, Sheng J, Yang L, Miri M, Christodoulides D N, He B, Zhang Y, Xiao M 2016 Phys. Rev. Lett. 117 123601Google Scholar

    [22]

    Makris K G, El-Ganainy R, Christodoulides D N, Musslimani Z H 2008 Phys. Rev. Lett. 100 103904Google Scholar

    [23]

    Sieberer L M, Buchhold M, Diehl S 2016 Rep. Prog. Phys. 79 096001Google Scholar

    [24]

    Wouters M, Carusotto I 2007 Phys. Rev. Lett. 99 140402Google Scholar

    [25]

    Szymanska M H, Keeling J, Littlewood P B 2006 Phys. Rev. Lett. 96 230602Google Scholar

    [26]

    Byrnes T, Kim N Y, Yamamoto Y 2014 Nat. Phys. 10 803Google Scholar

    [27]

    Anton C, Liew T C H, Cuadra J, Martin M D, Eldridge P S, Hatzopoulos Z, Stavrinidis G, Savvidis P G, Vina L 2013 Phys. Rev. B 88 245307Google Scholar

    [28]

    Smirnov L A, Smirnova D A, Ostrovskaya E A, Kivshar Y S 2014 Phys. Rev. B 89 235310Google Scholar

    [29]

    Xue Y, Matuszewski M 2014 Phys. Rev. Lett. 112 216401Google Scholar

    [30]

    Liew T C H, Egorov O A, Matuszewski M, Kyriienko O, Ma X, Ostrovskaya E A 2015 Phys. Rev. B 91 085413Google Scholar

    [31]

    Kol G R 2017 Opt. Quantum Electron. 49 385Google Scholar

    [32]

    Cheng S, Chen T 2018 Phys. Rev. E 97 032212Google Scholar

    [33]

    Yoon S, Sun M, Rubo Y G, Savenko I G 2019 Phys. Rev. A 100 023609Google Scholar

    [34]

    Opala A, Pieczarka M, Bobrovska N, Matuszewski M 2018 Phys. Rev. B 97 155304Google Scholar

    [35]

    Xue Y, Jiang Y, Wang G, Wang R, Feng S, Matuszewski M 2018 Opt. Express 26 6267Google Scholar

    [36]

    Sigurdsson H, Liew T C H, Shelykh I A 2017 Phys. Rev. B 96 205406Google Scholar

    [37]

    Ma X, Egorov O A, Schumacher S 2017 Phys. Rev. Lett. 118 157401Google Scholar

    [38]

    Pinsker F, Flayac H 2016 Proc. R. Soc. A 472 20150592Google Scholar

    [39]

    Kulczykowski M, Bobrovska N, Matuszewski M 2015 Phys. Rev. B 91 245310Google Scholar

    [40]

    Ma X, Schumacher S 2017 Phys. Rev. B 95 235301Google Scholar

    [41]

    Ostrovskaya E A, Abdullaev J, Desyatnikov A S, Fraser M D, Kivshar Y S 2012 Phys. Rev. A 86 013636Google Scholar

    [42]

    Tanese D, Flayac H, Solnyshkov D, Amo A, Lemaître A, Galopin E, Braive R, Senellart P, Sagnes I, Malpuech G, Bloch J 2013 Nat. Commun. 4 1749Google Scholar

    [43]

    Ostrovskaya E A, Abdullaev J, Fraser M D, Desyatnikov A S, Kivshar Y S 2013 Phys. Rev. Lett. 110 170407Google Scholar

    [44]

    Pinsker F, Flayac H 2014 Phys. Rev. Lett. 112 140405Google Scholar

    [45]

    Lien J, Chen Y, Ishida N, Chen H, Hwang C, Nori F 2015 Phys. Rev. B 91 024511Google Scholar

    [46]

    Chestnov I Y, Demirchyan S S, Alodjants A P, Rubo Y G, Kavokin A V 2016 Sci. Rep. 6 19551Google Scholar

    [47]

    Ma X K, Kartashov Y Y, Gao T, Schumacher S 2019 New J. Phys. 21 123008Google Scholar

    [48]

    Jia C Y, Liang Z X 2020 Chin. Phys. Lett. 37 040502Google Scholar

    [49]

    Zhang K, Wen W, Lin J, Li H 2021 New J. Phys. 23 033011Google Scholar

    [50]

    Yang J 2011 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadephia: PA: SIAM) p327

    [51]

    Carusotto I, Ciuti C 2013 Rev. Mod. Phys. 85 299Google Scholar

    [52]

    Zhang K, Liang Y, Lin J, Li H 2018 Phys. Rev. A 97 023844Google Scholar

    [53]

    Suchkov S V, Sukhorukov A A, Huang J H 2016 Laser Photonics Rev. 10 177Google Scholar

    [54]

    Konotop V V, Yang J K, Zezyulin D A 2016 Rev. Mod. Phys. 88 035002Google Scholar

    [55]

    Ozdemir S K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783Google Scholar

    [56]

    Rodislav D, Boris A M 2011 Opt. Lett. 36 4323Google Scholar

    [57]

    Yang J 2017 J. Opt. 19 054004Google Scholar

    [58]

    Akhmediev N, Ankiewicz A 2005 Dissipative Solitons (Berlin: Springer) pp1–17

    [59]

    Bludov Y V, Hang C, Huang G, Konotop V V 2014 Opt. Lett. 39 3382Google Scholar

    [60]

    Nixon S, Zhu Y, Yang J 2012 Opt. Lett. 37 4874Google Scholar

    [61]

    党婷婷, 王娟芬, 安亚东, 刘香莲, 张朝霞, 杨玲珍 2015 物理学报 64 064211Google Scholar

    Dang T T, Wang J F, An Y D, Liu X L, Zhang Z X, Yang L Z 2015 Acta Phys. Sin. 64 064211Google Scholar

  • [1] 王金玲, 张昆, 林机, 李慧军. 二维激子-极化子凝聚体中冲击波的产生与调控. 物理学报, 2024, 73(11): 119601. doi: 10.7498/aps.73.20240229
    [2] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解. 物理学报, 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [3] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波. 物理学报, 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [4] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [5] 刘昊华, 王少华, 李波波, 李桦林. 缺陷致非线性电路孤子非对称传输. 物理学报, 2017, 66(10): 100502. doi: 10.7498/aps.66.100502
    [6] 何章明, 张志强. 玻色-爱因斯坦凝聚体中的双孤子相互作用操控. 物理学报, 2016, 65(11): 110502. doi: 10.7498/aps.65.110502
    [7] 乔海龙, 贾维国, 刘宝林, 王旭东, 门克内木乐, 杨军, 张俊萍. 拉曼增益对孤子传输特性的影响. 物理学报, 2013, 62(10): 104212. doi: 10.7498/aps.62.104212
    [8] 张恒, 段文山. 二维玻色-爱因斯坦凝聚中孤立波的调制不稳定性. 物理学报, 2013, 62(4): 044703. doi: 10.7498/aps.62.044703
    [9] 陆大全, 胡巍. 椭圆响应强非局域非线性介质中的二维异步分数傅里叶变换及光束传输特性. 物理学报, 2013, 62(8): 084211. doi: 10.7498/aps.62.084211
    [10] 陆大全, 胡巍. 强非局域非线性介质中强光导引的弱光呼吸子传输规律研究. 物理学报, 2013, 62(3): 034205. doi: 10.7498/aps.62.034205
    [11] 袁宗强, 褚敏, 郑志刚. Fermi-Pasta-Ulam β 格点链系统能量载流子研究. 物理学报, 2013, 62(8): 080504. doi: 10.7498/aps.62.080504
    [12] 张波, 王登龙, 佘彦超, 张蔚曦. 方势阱中凝聚体的孤子动力学行为. 物理学报, 2013, 62(11): 110501. doi: 10.7498/aps.62.110501
    [13] 伊丁, 秦伟, 解士杰. 钙钛矿锰氧化物中的极化子研究. 物理学报, 2012, 61(20): 207101. doi: 10.7498/aps.61.207101
    [14] 陶锋, 陈伟中, 许文, 都思丹. 基于非线性超传导的能流不对称传输现象的研究. 物理学报, 2012, 61(13): 134103. doi: 10.7498/aps.61.134103
    [15] 刘海兰, 文双春, 熊 敏, 戴小玉. 超常介质中暗孤子的形成和传输特性研究. 物理学报, 2007, 56(11): 6473-6479. doi: 10.7498/aps.56.6473
    [16] 何章明, 王登龙. 凝聚体中亮孤子和暗孤子的交替演化. 物理学报, 2007, 56(6): 3088-3091. doi: 10.7498/aps.56.3088
    [17] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [18] 徐 岩, 薛德胜, 左 维, 李发伸. 非均匀交换各向异性铁磁介质的非线性表面自旋波. 物理学报, 2003, 52(11): 2896-2900. doi: 10.7498/aps.52.2896
    [19] 洪学仁, 段文山, 孙建安, 石玉仁, 吕克璞. 非均匀尘埃等离子体中孤子的传播. 物理学报, 2003, 52(11): 2671-2677. doi: 10.7498/aps.52.2671
    [20] 王晓生, 佘卫龙. 部分空间非相干光光伏空间孤子. 物理学报, 2002, 51(3): 573-577. doi: 10.7498/aps.51.573
计量
  • 文章访问数:  3717
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 修回日期:  2022-04-18
  • 上网日期:  2022-09-05
  • 刊出日期:  2022-09-20

/

返回文章
返回