搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有源器件混合集成的超薄超宽带可调雷达吸波体

冯奎胜 李娜 李桐

引用本文:
Citation:

有源器件混合集成的超薄超宽带可调雷达吸波体

冯奎胜, 李娜, 李桐

Ultra-thin ultra-wideband tunable radar absorber based on hybrid incorporation of active devices

Feng Kui-Sheng, Li Na, Li Tong
PDF
HTML
导出引用
  • 结构型雷达吸波材料不仅可以有效吸收雷达波, 还能同时承受载荷, 在雷达隐身领域具有重要应用. 基于超表面的结构型雷达吸波材料可以实现对雷达波近乎“完美”的吸收, 且具有结构轻薄的特点, 但其限制在于吸波带宽通常较窄. 针对该问题, 提出一种拓宽超表面吸波体工作带宽的新方法. 该方法利用可重构的思想, 通过在超表面中混合集成变容二极管和开关二极管, 将吸波频率的连续可调与离散搬移有机结合, 以此展宽吸波体的有效吸波带宽. 基于该方法, 设计了一款超宽带可调超表面吸波体, 并深入分析了其吸波机理, 通过开关二极管和变容二极管工作状态的调节与配合, 在4.57—8.51 GHz内实现了高效可调吸波. 实测结果验证了该吸波体的低雷达散射截面特性, 证实了设计方法的有效性. 所提出的宽带可调设计方法简单可行, 还可以拓展应用到其他类型的宽带微波器件设计.
    Structural radar absorber has important application in stealth field for its ability to effectively absorb incoming radar wave and to bear the load at the same time. Metasurface absorbers can achieve nearly-perfect absorption of radar wave, and have characteristics of light weight and thin structure, but their bandwidth are usually narrow. To solve this problem, a new method of broadening the bandwidth of metasurface absorber is proposed in this work. With varactor and PIN diode integrated in a hybrid manner, the continuous tunning and discrete switching are combined together to broaden the effective absorption bandwidth of the absorber. Using this method, an ultra-wideband tunable metasurface absorber is designed and the absorbing mechanism is analyzed in depth. By changing the bias voltages of PIN diodes and varactors, the absorbing frequency can be continuously tuned within a wide band from 4.57 GHz to 8.51 GHz. Measured results verify the low radar cross section characteristics of the absorber and the effectiveness of the design method. The proposed method is simple and feasible, and can be extended to other broadband structure design.
      通信作者: 李桐, tongli8811@sina.com
    • 基金项目: 国家自然科学基金(批准号: 61701523, 61801508)、陕西省自然科学基础研究计划(批准号: 2020JM-350, 20210110, 20200108, 2020022)、博士后创新基金(批准号: BX20180375, 2019M653960)和大学生创新创业训练计划(批准号: 202113468002, S202113468012)资助的课题.
      Corresponding author: Li Tong, tongli8811@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61701523, 61801508), the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2020JM-350, 20210110, 20200108, 2020022), the Postdoctoral Innovative Talents Support Program of China (Grant Nos. BX20180375, 2019M653960), and the College Students’ Innovation and Entrepreneurship Training Program, China (Grant Nos. 202113468002, S202113468012)
    [1]

    Li T, Yang H, Li Q, Zhang C, Han J, Cong L, Cao X, Gao J 2019 Opt. Mater. Express 9 1161Google Scholar

    [2]

    Yang H, Li T, Xu L, Cao X, Jidi L, Guo Z, Li P, Gao J 2021 IEEE T. Antenn. Propag. 69 1239Google Scholar

    [3]

    Li T, Yang H, Li Q, Zhu X, Cao X, Gao J, Wu Z 2019 IET Microw. Antenna. P. 13 185Google Scholar

    [4]

    崔铁军, 吴浩天, 刘硕 2020 物理学报 69 158101Google Scholar

    Cui T J, Wu H T, Liu S 2020 Acta Phys. Sin 69 158101Google Scholar

    [5]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [6]

    Jia Y, Liu Y, Guo Y J, Li K, Gong S X 2015 IEEE T. Antenn. Propag. 64 179Google Scholar

    [7]

    Liu T, Cao X, Gao J, Zheng Q, Li W, Yang H 2013 IEEE T. Antenn. Propag. 61 1479Google Scholar

    [8]

    Liu Y, Zhao X 2014 IEEE Antenn. Wirel. 13 1473Google Scholar

    [9]

    Ren J, Gong S, Jiang W 2018 IEEE Antenn. Wirel. PP 17 102Google Scholar

    [10]

    Landy N, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [11]

    Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401Google Scholar

    [12]

    Mei P, Zhang S, Lin X Q, Pedersen G F 2019 IEEE Antenn. Wirel. PP 18 521Google Scholar

    [13]

    Zhang H B, Zhou P H, Lu H P, Xu Y Q, Liang D F, Deng L J 2012 IEEE T. Antenn. Propag. 61 976Google Scholar

    [14]

    Costa F, Monorchio A, Manara G 2010 IEEE T. Antenn. Propag. 58 1551Google Scholar

    [15]

    Lim D, Lim S 2019 IEEE Antenn. Wirel. PP 18 1887Google Scholar

    [16]

    杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东 2013 物理学报 62 214101Google Scholar

    Yang H H, Cao X Y, Gao J, Liu T, Li S J, Zhao Y, Yuan Z D, Zhang H 2013 Acta Phys. Sin 62 214101Google Scholar

    [17]

    Lu X, Chen J, Peng Z, Wu Z, Anxue Z 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC) Taiyuan, China, July 18–21, 2019 p1

    [18]

    Panwar R, Puthucheri S, Agarwala V, Singh D 2015 IEEE T. Microw. Theory Techn. 63 2438Google Scholar

    [19]

    Zhao B, Huang C, Yang J, Song J, Guan C, Luo X 2020 IEEE Antenn. Wirel. PP 19 982Google Scholar

    [20]

    Ghosh S K, Yadav V S, Das S, Bhattacharyya S 2020 IEEE T. Electromagn. C. 62 346Google Scholar

    [21]

    Shang Y, Shen Z, Xiao S 2013 IEEE T. Antenn. Propag. 61 6022Google Scholar

    [22]

    Zhang B, Jin C, Shen Z 2020 IEEE T. Microw. Theory Techn. 68 835Google Scholar

    [23]

    Han Y, Che W 2017 IEEE Antenn. Wirel. PP 16 74Google Scholar

    [24]

    Chen J, Hu Z, Wang G, Huang X, Wang S, Hu X, Liu M 2015 IEEE T. Antenn. Propag. 63 4367Google Scholar

    [25]

    杨欢欢, 曹祥玉, 高军, 李桐, 李思佳, 丛丽丽, 赵霞 2021 雷达学报 10 206Google Scholar

    Ynag H H, Cao X Y, Gao J, Li T, Li S J, Cong L L, Zhao X 2021 J. Radars 10 206Google Scholar

    [26]

    Hu N, Zhang J, Zha S, Liu C, Liu H, Liu P 2019 IEEE Antenn. Wirel. PP 18 373Google Scholar

    [27]

    Kim S, Li A, Lee J, Sievenpiper D F 2021 IEEE T. Antenn. Propag. 69 2759Google Scholar

    [28]

    Li A, Kim S, Luo Y, Li Y, Long J, Sievenpiper D F 2017 IEEE T. Microw. Theory Techn. 65 2810Google Scholar

    [29]

    Zhang Y, Cao Z, Huang Z, Miao L, Bie S, Jiang J 2021 IEEE T. Antenn. Propag. 69 1204Google Scholar

    [30]

    Costa F, Monorchio A, Vastante G P 2011 IEEE Antenn. Wirel. PP 10 11Google Scholar

    [31]

    Xu W, Sonkusale S 2013 Appl. Phys. Lett. 103 031902Google Scholar

    [32]

    Yuan H, Li H, Fang X, Wang Y, Cao Q 2021 IEEE Antenn. Wirel. PR 63 11Google Scholar

    [33]

    Xu W H, He Y, Kong P, Li J L, Xu H B, Miao L, Bie S W, Jiang J J 2015 J. Appl. Phys. 118 184903Google Scholar

    [34]

    Raad H R, Abbosh A I, Al-Rizzo H M, Rucker D G 2013 IEEE T. Antenn. Propag. 61 524Google Scholar

    [35]

    Yang H, Cao X, Yang F, Gao J, Xu S, Li M, Chen X, Zhao Y, Zheng Y, Li S 2016 Sci. Rep. 6 35692Google Scholar

  • 图 1  方形无源超表面单元 (a) 结构俯视图; (b) 结构侧视图; (c) 等效电路模型

    Fig. 1.  Square-shaped passive metasurface absorber: (a) Top view; (b) side view; (c) equivalent circuit model.

    图 2  频率可调超表面单元 (a) 结构图; (b) 等效电路模型

    Fig. 2.  Frequency tunable metasurface absorber: (a) Configuration; (b) equivalent circuit model.

    图 3  超宽带可调超表面单元 (a) 结构图; (b) 开关导通及(c)断开时的等效电路模型

    Fig. 3.  Ultra-wideband active metasurface absorber (AMSA): (a) Configuration; (b), (c) equivalent circuit model of PIN diode at ON state (b) and OFF state (c).

    图 4  宽带可调吸波示意图 (a) 分段可调吸波; (b) 超宽带可调吸波

    Fig. 4.  Design concept of the ultra-wideband tunability: (a) Separate tunable absorbing band; (b) ultra-wideband tunable absorbing band.

    图 5  宽带可调吸波超表面单元

    Fig. 5.  Unit cell of the proposed ultra-wideband AMSA.

    图 6  开关二极管不同工作状态下吸波率随变容管容值的变化 (a) 垂直入射; (b) 斜入射

    Fig. 6.  Simulated absorptivity vs. varactor capacitance values for different diode states: (a) Under normal incidence; (b) under oblique incidence.

    图 7  吸波体性能随介质基板厚度的变化(PIN导通, C = 0.71 pF, tanδ = 0.02) (a) 吸波率; (b) 表面阻抗实部; (c) 表面阻抗虚部

    Fig. 7.  Simulated performance of the proposed ultra-wideband AMSA with different substrate thicknesses (PIN diode at ON state, C = 0.71 pF, tanδ = 0.02): (a) Absorptivity; (b) real part of surface impedance; (c) imaginary part of surface impedance.

    图 8  吸波体性能随介质基板损耗角正切的变化(PIN导通, C = 0.71 pF, h = 0.5 mm) (a) 吸波率; (b) 吸波峰值处的体功率损耗密度

    Fig. 8.  Simulated performance of the proposed ultra-wideband AMSA with different substrate losses (PIN diode at ON state, C = 0.71 pF, h = 0.5 mm): (a) Absorptivity; (b) volume loss density at absorption peak.

    图 9  宽带可调超表面吸波体实物及测试装置 (a) 10 × 10阵面照片; (b) 单元结构放大图; (c)直流馈电电路示意图; (d) 测试装置

    Fig. 9.  Fabricated ultra-wideband AMSA and the measurement setup: (a) Photo of 10 × 10 sample; (b) magnified picture of the unit cell; (c) schematic diagram of the biasing circuit; (d) measurement setup.

    图 10  仿真与实测的单站RCS减缩曲线(实线, 仿真结果; 虚线, 实测结果)

    Fig. 10.  Simulated and measured monostatic RCS reduction. Solid lines, simulated results; dashed lines, measured results.

    表 1  超宽带可调超表面吸波体仿真与实测性能

    Table 1.  Simulated and measured performance of ultra wideband adjustable surface absorber.

    偏置电压/VC/
    pF
    吸波峰值
    频率/GHz
    RCS减缩峰值
    频率/GHz
    VdVc仿真仿真实测
    0.950.517.414.574.504.48
    9.01.455.455.475.52
    30.00.716.056.036.16
    00.510.235.855.905.82
    9.01.457.317.267.10
    30.00.718.518.468.34
    下载: 导出CSV
  • [1]

    Li T, Yang H, Li Q, Zhang C, Han J, Cong L, Cao X, Gao J 2019 Opt. Mater. Express 9 1161Google Scholar

    [2]

    Yang H, Li T, Xu L, Cao X, Jidi L, Guo Z, Li P, Gao J 2021 IEEE T. Antenn. Propag. 69 1239Google Scholar

    [3]

    Li T, Yang H, Li Q, Zhu X, Cao X, Gao J, Wu Z 2019 IET Microw. Antenna. P. 13 185Google Scholar

    [4]

    崔铁军, 吴浩天, 刘硕 2020 物理学报 69 158101Google Scholar

    Cui T J, Wu H T, Liu S 2020 Acta Phys. Sin 69 158101Google Scholar

    [5]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [6]

    Jia Y, Liu Y, Guo Y J, Li K, Gong S X 2015 IEEE T. Antenn. Propag. 64 179Google Scholar

    [7]

    Liu T, Cao X, Gao J, Zheng Q, Li W, Yang H 2013 IEEE T. Antenn. Propag. 61 1479Google Scholar

    [8]

    Liu Y, Zhao X 2014 IEEE Antenn. Wirel. 13 1473Google Scholar

    [9]

    Ren J, Gong S, Jiang W 2018 IEEE Antenn. Wirel. PP 17 102Google Scholar

    [10]

    Landy N, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [11]

    Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401Google Scholar

    [12]

    Mei P, Zhang S, Lin X Q, Pedersen G F 2019 IEEE Antenn. Wirel. PP 18 521Google Scholar

    [13]

    Zhang H B, Zhou P H, Lu H P, Xu Y Q, Liang D F, Deng L J 2012 IEEE T. Antenn. Propag. 61 976Google Scholar

    [14]

    Costa F, Monorchio A, Manara G 2010 IEEE T. Antenn. Propag. 58 1551Google Scholar

    [15]

    Lim D, Lim S 2019 IEEE Antenn. Wirel. PP 18 1887Google Scholar

    [16]

    杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东 2013 物理学报 62 214101Google Scholar

    Yang H H, Cao X Y, Gao J, Liu T, Li S J, Zhao Y, Yuan Z D, Zhang H 2013 Acta Phys. Sin 62 214101Google Scholar

    [17]

    Lu X, Chen J, Peng Z, Wu Z, Anxue Z 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC) Taiyuan, China, July 18–21, 2019 p1

    [18]

    Panwar R, Puthucheri S, Agarwala V, Singh D 2015 IEEE T. Microw. Theory Techn. 63 2438Google Scholar

    [19]

    Zhao B, Huang C, Yang J, Song J, Guan C, Luo X 2020 IEEE Antenn. Wirel. PP 19 982Google Scholar

    [20]

    Ghosh S K, Yadav V S, Das S, Bhattacharyya S 2020 IEEE T. Electromagn. C. 62 346Google Scholar

    [21]

    Shang Y, Shen Z, Xiao S 2013 IEEE T. Antenn. Propag. 61 6022Google Scholar

    [22]

    Zhang B, Jin C, Shen Z 2020 IEEE T. Microw. Theory Techn. 68 835Google Scholar

    [23]

    Han Y, Che W 2017 IEEE Antenn. Wirel. PP 16 74Google Scholar

    [24]

    Chen J, Hu Z, Wang G, Huang X, Wang S, Hu X, Liu M 2015 IEEE T. Antenn. Propag. 63 4367Google Scholar

    [25]

    杨欢欢, 曹祥玉, 高军, 李桐, 李思佳, 丛丽丽, 赵霞 2021 雷达学报 10 206Google Scholar

    Ynag H H, Cao X Y, Gao J, Li T, Li S J, Cong L L, Zhao X 2021 J. Radars 10 206Google Scholar

    [26]

    Hu N, Zhang J, Zha S, Liu C, Liu H, Liu P 2019 IEEE Antenn. Wirel. PP 18 373Google Scholar

    [27]

    Kim S, Li A, Lee J, Sievenpiper D F 2021 IEEE T. Antenn. Propag. 69 2759Google Scholar

    [28]

    Li A, Kim S, Luo Y, Li Y, Long J, Sievenpiper D F 2017 IEEE T. Microw. Theory Techn. 65 2810Google Scholar

    [29]

    Zhang Y, Cao Z, Huang Z, Miao L, Bie S, Jiang J 2021 IEEE T. Antenn. Propag. 69 1204Google Scholar

    [30]

    Costa F, Monorchio A, Vastante G P 2011 IEEE Antenn. Wirel. PP 10 11Google Scholar

    [31]

    Xu W, Sonkusale S 2013 Appl. Phys. Lett. 103 031902Google Scholar

    [32]

    Yuan H, Li H, Fang X, Wang Y, Cao Q 2021 IEEE Antenn. Wirel. PR 63 11Google Scholar

    [33]

    Xu W H, He Y, Kong P, Li J L, Xu H B, Miao L, Bie S W, Jiang J J 2015 J. Appl. Phys. 118 184903Google Scholar

    [34]

    Raad H R, Abbosh A I, Al-Rizzo H M, Rucker D G 2013 IEEE T. Antenn. Propag. 61 524Google Scholar

    [35]

    Yang H, Cao X, Yang F, Gao J, Xu S, Li M, Chen X, Zhao Y, Zheng Y, Li S 2016 Sci. Rep. 6 35692Google Scholar

  • [1] 冯奎胜, 李娜, 杨欢欢. 电磁超构表面与天线结构一体化的低RCS阵列. 物理学报, 2021, 70(19): 194101. doi: 10.7498/aps.70.20210746
    [2] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211254
    [3] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐. 一种编码式低雷达散射截面超表面天线阵列设计. 物理学报, 2020, 69(24): 244101. doi: 10.7498/aps.69.20200978
    [4] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [5] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [6] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏. 物理学报, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [7] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [8] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [9] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [10] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证. 物理学报, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [11] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备. 物理学报, 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [12] 郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜. 覆盖X和Ku波段的低雷达散射截面人工磁导体反射屏. 物理学报, 2015, 64(2): 024219. doi: 10.7498/aps.64.024219
    [13] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [14] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [15] 鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐. 宽带雷达散射截面减缩人工磁导体复合结构. 物理学报, 2013, 62(3): 034206. doi: 10.7498/aps.62.034206
    [16] 赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢. 人工磁导体正交布阵的宽带低雷达截面反射屏. 物理学报, 2013, 62(15): 154204. doi: 10.7498/aps.62.154204
    [17] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [18] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [19] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [20] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响. 物理学报, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
计量
  • 文章访问数:  3014
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-05
  • 修回日期:  2021-09-27
  • 上网日期:  2022-01-19
  • 刊出日期:  2022-02-05

/

返回文章
返回