搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗糙面上粒子层矢量辐射传输方程的二阶迭代解法

姚海 何姿 丁大志 陈如山 党训旺 陈勇

引用本文:
Citation:

粗糙面上粒子层矢量辐射传输方程的二阶迭代解法

姚海, 何姿, 丁大志, 陈如山, 党训旺, 陈勇

High-order iterative method for vector radiative transfer equation of particle layer on rough surface

Yao Hai, He Zi, Ding Da-Zhi, Chen Ru-Shan, Dang Xun-Wang, Chen Yong
PDF
HTML
导出引用
  • 为了探究典型粗糙面上随机粒子层中能量传输的多次散射机制, 提出了一种基于矢量辐射传输方程的建模二阶计算方法. 该建模方法将建模场景(粗糙面上粒子层)在高度维(Z轴)划分为多个传输散射层, 基于矢量辐射传输理论中的一阶迭代散射解, 利用典型粗糙面的半经验半解析方法, 求解出整个场景的二阶迭代散射解. 同时, 研究粒子层能量在粒子与粒子间的多次散射机制, 以及粒子与地表粗糙面间的多次散射机制. 数值结果表明, 该二阶迭代解法相较于矢量辐射传输方程的一阶迭代散射解, 能够更完整地探究互作用的散射特性, 且可从能量传输角度解译建模场景中物体间的相干作用, 从而可用于植被地物环境下的多次散射机制的解析以及散射系数变化趋势的预估.
    In order to investigate the multiple scattering characteristics of energy transmission in a random particle layer on a typical rough surface, a high-order iterative method based on radiative transfer equation is proposed in this work. The particles are placed on the rough surface and the height dimension (Z-axis) is divided into several layers. Then the high-order iterative solution can be obtained by using the first-order iteration solution of radiative transfer equation and the rough surface theory. Moreover, the multiple scattering characteristics between particles, as well as between particles and rough surface can be obtained. Numerical results show that the multiple scattering characteristics can be better explored by the proposed high-order iterative method than by the first-order iteration method. All these interactions can be explained by the energy transfer theory. The proposed high-order iterative method can be used as an efficient tool to explain the multiple scattering characteristics and predict the change of the scattering coefficients.
      通信作者: 何姿, zihe@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61931021, 62071231, 61890541)、江苏省自然科学基金(批准号: BK20211571)和南京理工大学自主科研专项计划(批准号: 30921011207)资助的课题.
      Corresponding author: He Zi, zihe@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61931021, 62071231, 61890541), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20211571), and the Independent Research Project of Nanjing University of Science and Technology, China (Grant No. 30921011207).
    [1]

    Ulaby F T, David G L 2014 Microwave Radar and Radiometric Remote Sensing (USA: University of Michigan Press)

    [2]

    Tsang L, Kong J A, Shin R T 1985 Theory of Microwave Remote Sensing (USA: Wiley-Interscience Publication)

    [3]

    Tsang L, Ding K H 1991 IEEE Trans. Geosci. Remote Sen. 29 242Google Scholar

    [4]

    Jin Y Q 1993 Electromagnetic Scattering Modelling for Quantitative Remote Sensing (Singapore: World Scientific Publication)

    [5]

    Jin Y Q 2006 Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing (Netherlands: Springer)

    [6]

    Shin R T, Kong J A 1981 J. Appl. Phys. 52 4221Google Scholar

    [7]

    Jin Y Q, Chang M 2002 3rd International Conference on Microwave and Millimeter Wave Technology, Beijing, China, August 17–19, 2002 p7508398

    [8]

    Chang M, Jin Y Q 2002 J. Quantitative Spectrosco. Rad. Transfer 74 339Google Scholar

    [9]

    常梅, 金亚秋 2002 物理学报 51 74Google Scholar

    Chang M, Jin Y Q 2002 Acta Phys. Sin. 51 74Google Scholar

    [10]

    Fung A K, Li Z, Chen K S, et al. 1992 IEEE Trans. Geosci. Remote Sen. 30 356Google Scholar

    [11]

    徐丰, 金亚秋 2005 微波学报 21 1Google Scholar

    Xu F, Jin Y Q 2005 J. Microwaves 21 1Google Scholar

    [12]

    Fa W Z, WieczorekM A, Heggy E 2011 J. Geophys. Res. 116 E03005Google Scholar

    [13]

    Xu F 2013 Polarimetric Scattering and SAR Information Retrieval (Singapore: John Wiley & Sons)

    [14]

    Liang Z C 2003 J. Quantitative Spectrosco. Rad. Transfer 77 1Google Scholar

    [15]

    梁子长, 金亚秋 2003 物理学报 52 247Google Scholar

    Liang Z C, Jin Y Q 2003 Acta Phys. Sin. 52 247Google Scholar

    [16]

    张元元 2017 博士学位论文 (西安: 西安电子科技大学)

    Zhang Y Y 2017 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese)

    [17]

    Ulaby F T, Sarabandi K, McDonald K, et al. 1990 Int. J. Remote Sens. 11 1223Google Scholar

    [18]

    王宏坤 2015 硕士学位论文 (南京: 东南大学)

    Wang H K 2015 M. S. Thesis (Nanjing: Southeast University) (in Chinese)

    [19]

    Karam M A 1989 IEEE Trans. Geosci. Remote. Sen. 27 687Google Scholar

    [20]

    Karam M A, Fung A K 1988 Int. J. Remote Sens. 9 1109Google Scholar

    [21]

    Wu T D, Chen K S 2008 IEEE Trans. Geosci. Remote Sen. 46 2584Google Scholar

  • 图 1  粗糙面上粒子层模型示意图, 图中为层厚为d1的粒子层, 最下层为随机粗糙面模型, 绿色部分为粒子层中椭球粒子模型, 深色部分为圆柱粒子模型

    Fig. 1.  Particle layer model on rough surface. The figure shows the particle layer with layer thickness of d1, the bottom layer is the random rough surface model, the green parts is the ellipsoid particle model in the particle layer, and the dark parts is the cylinder particle model.

    图 2  VRT方程各项散射机制示意图. 图中最上层为粗糙面模型, 绿色部分表示粒子层随机分布的粒子模型, 粒子层层厚为d1, $ {{\boldsymbol{M}}_i} $为VRT方程不同散射机制Muller矩阵解

    Fig. 2.  Various scattering mechanisms of VRT equation. In the figure, the top layer is the rough surface model, and the green parts represent the particle model with random distribution of particle layers. The thickness of particle layers is d1, and $ {{\boldsymbol{M}}_i} $ is the solution of Muller matrix with different scattering mechanism of VRT equation.

    图 3  粒子层多次散射过程示意图 (a) (粒子-粒子)二次散射机制示意图; (b) (粒子-粒子-粗糙面)三次散射机制示意图; (c) (粗糙面-粒子-粒子)三次散射机制示意图; (d) (粒子-粗糙面-粒子)三次散射机制示意图

    Fig. 3.  Diagram of multiple scattering process of particle layer: (a) (Particle-particle) secondary scattering mechanism; (b) (particle-particle-rough surface) third-order scattering mechanism; (c) (rough surface-particle-particle) third-order scattering mechanism; (d) (particle-rough surface- particle) third-order scattering mechanism.

    图 4  不同形态粒子的粒子层后向散射系数对比 (a)取向角均匀椭球粒子层同极化后向散射系数; (b)竖直圆柱粒子层的同极化后向散射系数; (c)固定倾斜角圆柱粒子层的同极化后向散射系数; (d)取向角均匀椭球粒子层的交叉极化后向散射系数; (e)竖直圆柱粒子层的交叉极化后向散射系数; (f)固定倾斜角粒子层的交叉极化后向散射系数.

    Fig. 4.  Backscattering coefficients of particle layers with different morphology particles: (a) Co-polarization backscattering coefficient of a layer of ellipsoid particles with uniform orientation angles; (b) the co-polarization backscattering coefficient of a layer of vertical cylindrical particles; (c) the co-polarization backscattering coefficient of a layer of cylindrical particles with fixed inclination angles; (d) the cross-polarization backscattering coefficient of a layer of ellipsoid particles with uniform orientation angles; (e) the cross-polarization backscattering coefficient of the vertical cylindrical particle layer; (f) the cross-polarization backscattering coefficient of the particle layer with a fixed inclination angle.

    图 5  混合粒子的同极化散射系数对比

    Fig. 5.  Comparison of co-polarization scattering coefficients of mixed particles.

    图 6  混合粒子的交叉极化散射系数对比

    Fig. 6.  Comparison of cross-polarization scattering coefficients of composite particles.

    图 7  不同占空比下粒子层的同极化散射系数对比

    Fig. 7.  Comparison of the co-polarization scattering coefficients of particle layers with different duty cycles.

    图 8  不同占空比下粒子层的交叉极化散射系数对比

    Fig. 8.  Comparison of cross-polarization scattering coefficients of particle layers with different duty cycles.

    图 9  VRT模型示意图

    Fig. 9.  Grass of VRT model.

    图 10  仿真结果和实测数据对比图

    Fig. 10.  Comparison diagram of simulation results and measured data.

  • [1]

    Ulaby F T, David G L 2014 Microwave Radar and Radiometric Remote Sensing (USA: University of Michigan Press)

    [2]

    Tsang L, Kong J A, Shin R T 1985 Theory of Microwave Remote Sensing (USA: Wiley-Interscience Publication)

    [3]

    Tsang L, Ding K H 1991 IEEE Trans. Geosci. Remote Sen. 29 242Google Scholar

    [4]

    Jin Y Q 1993 Electromagnetic Scattering Modelling for Quantitative Remote Sensing (Singapore: World Scientific Publication)

    [5]

    Jin Y Q 2006 Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing (Netherlands: Springer)

    [6]

    Shin R T, Kong J A 1981 J. Appl. Phys. 52 4221Google Scholar

    [7]

    Jin Y Q, Chang M 2002 3rd International Conference on Microwave and Millimeter Wave Technology, Beijing, China, August 17–19, 2002 p7508398

    [8]

    Chang M, Jin Y Q 2002 J. Quantitative Spectrosco. Rad. Transfer 74 339Google Scholar

    [9]

    常梅, 金亚秋 2002 物理学报 51 74Google Scholar

    Chang M, Jin Y Q 2002 Acta Phys. Sin. 51 74Google Scholar

    [10]

    Fung A K, Li Z, Chen K S, et al. 1992 IEEE Trans. Geosci. Remote Sen. 30 356Google Scholar

    [11]

    徐丰, 金亚秋 2005 微波学报 21 1Google Scholar

    Xu F, Jin Y Q 2005 J. Microwaves 21 1Google Scholar

    [12]

    Fa W Z, WieczorekM A, Heggy E 2011 J. Geophys. Res. 116 E03005Google Scholar

    [13]

    Xu F 2013 Polarimetric Scattering and SAR Information Retrieval (Singapore: John Wiley & Sons)

    [14]

    Liang Z C 2003 J. Quantitative Spectrosco. Rad. Transfer 77 1Google Scholar

    [15]

    梁子长, 金亚秋 2003 物理学报 52 247Google Scholar

    Liang Z C, Jin Y Q 2003 Acta Phys. Sin. 52 247Google Scholar

    [16]

    张元元 2017 博士学位论文 (西安: 西安电子科技大学)

    Zhang Y Y 2017 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese)

    [17]

    Ulaby F T, Sarabandi K, McDonald K, et al. 1990 Int. J. Remote Sens. 11 1223Google Scholar

    [18]

    王宏坤 2015 硕士学位论文 (南京: 东南大学)

    Wang H K 2015 M. S. Thesis (Nanjing: Southeast University) (in Chinese)

    [19]

    Karam M A 1989 IEEE Trans. Geosci. Remote. Sen. 27 687Google Scholar

    [20]

    Karam M A, Fung A K 1988 Int. J. Remote Sens. 9 1109Google Scholar

    [21]

    Wu T D, Chen K S 2008 IEEE Trans. Geosci. Remote Sen. 46 2584Google Scholar

  • [1] 曾胜洋, 贾璐, 张书增, 李雄兵, 王猛. 非线性表面波的二阶微扰解及特性分析. 物理学报, 2022, 71(16): 164301. doi: 10.7498/aps.71.20212445
    [2] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [3] 姚海, 何姿, 丁大志, 陈如山, 党训旺, 陈勇. 粗糙面上粒子层矢量辐射传输方程的高阶迭代解法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211183
    [4] 崔巍, 闫在在, 木仁. 三层密度分层流体毛细重力波二阶Stokes波解. 物理学报, 2014, 63(14): 140301. doi: 10.7498/aps.63.140301
    [5] 郝宽胜, 黄松岭, 赵伟, 王珅. 基于二阶矢量位的矩形截面回折线圈阻抗和脉冲磁场的解析建模与计算. 物理学报, 2011, 60(7): 078103. doi: 10.7498/aps.60.078103
    [6] 邓争志, 黄虎. 表面张力-重力短峰波作用的海底边界层速度二阶解. 物理学报, 2010, 59(2): 735-739. doi: 10.7498/aps.59.735
    [7] 邓小玖, 汪国安, 刘彩霞, 赖传伟. 非傍轴矢量光束二阶矩的发散特性. 物理学报, 2009, 58(12): 8260-8263. doi: 10.7498/aps.58.8260
    [8] 程天海, 顾行发, 余涛, 陈良富, 田国良. 地表双向反射对天基矢量辐射探测的影响分析. 物理学报, 2009, 58(10): 7368-7375. doi: 10.7498/aps.58.7368
    [9] 程天海, 顾行发, 陈良富, 余 涛, 田国良. 卷云多角度偏振特性研究. 物理学报, 2008, 57(8): 5323-5332. doi: 10.7498/aps.57.5323
    [10] 莫嘉琪, 张伟江, 何 铭. 非线性广义Landau-Ginzburg-Higgs方程孤子解的变分迭代解法. 物理学报, 2007, 56(4): 1847-1850. doi: 10.7498/aps.56.1847
    [11] 庞 晶, 陈小刚, 宋金宝. 有流存在时三层流体界面波的二阶Stokes波解. 物理学报, 2007, 56(8): 4733-4741. doi: 10.7498/aps.56.4733
    [12] 康小平, 吕百达. 非傍轴矢量拉盖尔-高斯光束的二阶矩表示. 物理学报, 2006, 55(9): 4563-4568. doi: 10.7498/aps.55.4563
    [13] 杨鹏飞. 一类带限定变换的二阶耦合线性微分方程组的解析解. 物理学报, 2006, 55(11): 5579-5584. doi: 10.7498/aps.55.5579
    [14] 王 刚, 端木云, 崔一平, 张 宇, 刘 宓. 聚集效应对银纳米粒子的二阶非线性光学特性的影响研究. 物理学报, 2005, 54(1): 144-148. doi: 10.7498/aps.54.144
    [15] 陈小刚, 宋金宝, 孙 群. 三层流体界面内波的二阶Stokes解. 物理学报, 2005, 54(12): 5699-5706. doi: 10.7498/aps.54.5699
    [16] 梁子长, 金亚秋. 非均匀散射层矢量辐射传输(VRT)方程高阶散射解的迭代法. 物理学报, 2003, 52(2): 247-255. doi: 10.7498/aps.52.247
    [17] 梁子长, 金亚秋. 非均匀随机散射介质层的多次散射和热辐射的分层迭代解. 物理学报, 2003, 52(6): 1319-1325. doi: 10.7498/aps.52.1319
    [18] 梁子长, 金亚秋. 一层非球形粒子散射的标量辐射传输迭代解的求逆. 物理学报, 2002, 51(10): 2239-2244. doi: 10.7498/aps.51.2239
    [19] 印建平, 朱士群, 高伟建, 王育竹. 双模激光场的二阶量子相干性及其时谱特性. 物理学报, 1995, 44(1): 72-79. doi: 10.7498/aps.44.72
    [20] 戴元本. 位势在原点有高于二阶的极点时散射振幅的Regge行为. 物理学报, 1964, 20(9): 863-872. doi: 10.7498/aps.20.863
计量
  • 文章访问数:  4894
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-23
  • 修回日期:  2021-10-09
  • 上网日期:  2022-01-23
  • 刊出日期:  2022-02-05

/

返回文章
返回