搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态照明用Li2Gd4(MoO4)7:Sm3+橙红色荧光粉的结构和发光特性

禄靖雯 赵瑾 张永春 涂茹婷 刘馥妮 冷稚华

引用本文:
Citation:

固态照明用Li2Gd4(MoO4)7:Sm3+橙红色荧光粉的结构和发光特性

禄靖雯, 赵瑾, 张永春, 涂茹婷, 刘馥妮, 冷稚华
cstr: 32037.14.aps.73.20241017

Structure and luminescence properties of Li2Gd4(MoO4)7:Sm3+ orange-red phosphor for solid-state lighting

Lu Jing-Wen, Zhao Jin, Zhang Yong-Chun, Tu Ru-Ting, Liu Fu-Ni, Leng Zhi-Hua
cstr: 32037.14.aps.73.20241017
PDF
HTML
导出引用
  • 白光LED具有广阔的应用前景与市场需求, 而红色荧光粉对改善器件性能至关重要. 本文采用高温固相法制备了一系列Li2Gd4–xSmx(MoO4)7 (x = 0.01—0.13)荧光粉, 利用X射线衍射、扫描电子显微镜、X射线光电子能谱和荧光光谱仪对样品进行了表征. 在406 nm激发下, Li2Gd4(MoO4)7:Sm3+荧光粉的发射峰分别位于563, 598, 645, 706 nm处, 这是由于Sm3+的4f-4f跃迁引起的. 当Sm3+浓度为0.07时发光最强, 浓度猝灭主要归因于电偶极-电偶极相互作用. 随着Sm3+浓度的增大, 荧光寿命逐渐缩短. 温度依赖性发射光谱研究发现, 当温度为423 K时, Li2Gd4(MoO4)7:0.07Sm3+的发射强度依然保持在298 K时的79%, 显示了样品优良的热稳定性. CIE色度图确认了该荧光粉的发射位于橙红色区域. 进一步利用最佳样品制作了白光LED, 其CIE色坐标为(0.3788, 0.3134), 位于白光圈内. 研究表明Li2Gd4(MoO4)7:Sm3+荧光粉是一种很有前途的白光LED用橙红色荧光粉.
    White LEDs have the broad application prospect and market demand, while the red phosphor can greatly affect the color temperature and color rendering index of the modulated white light. In this work, a series of Li2Gd4–x Smx(MoO4)7 (x = 0.01–0.13) phosphors is prepared by the high-temperature solid phase method. The successful doping of Sm3+ into Li2Gd4(MoO4)7 is confirmed by X-ray diffractometry (XRD) and does not lead to any change in crystal structure. The samples are detected by scanning electron microscope (SEM) to have irregular blocky structures with particle size less than 20 μm. The existence of Li, Gd, Mo, O and Sm elements in the phosphor is confirmed by energy dispersive X-ray spectroscopy (EDS). The observation of X-ray photoelectron spectroscopy (XPS) shows that the activators are successfully doped into materials. Under 406 nm excitation, the emission peaks of the samples are located at 563, 598, 645 and 706 nm respectively, which are caused by the 4f-4f transition of Sm3+, and the strongest emission peak comes from 4G5/26H9/2 transition. It is found that optimal concentration of Sm3+ is 0.07. With the increase of Sm3+ concentration, the fluorescence lifetime decreases gradually. The temperature-dependent emission of phosphor is also studied. The emission intensity at 473 K is still 79% of that at 298 K, indicating that the sample has excellent heat resistance. The CIE chromaticity diagram shows the luminescence of the prepared phosphor is located in the orange-red region and the color purity is high (99%). Moreover, a white LED is fabricated using the optical doped phosphor, which has CIE coordinates of (0.3788, 0.3134) that are located in the circle of white light. Research shows that the Li2Gd4(MoO4)7:Sm3+ phosphor is a promising orange-red phosphor for white LEDs.
      通信作者: 赵瑾, zhaojin@xauat.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11804265)、陕西省重点科技创新团队项目(批准号: 2022TD-30)和陕西省自然科学基础研究计划(批准号: 2024JC-YBMS-384)资助的课题.
      Corresponding author: Zhao Jin, zhaojin@xauat.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11804265), the Key Science and Technology Innovation Team of Shaanxi Province, China (Grant No. 2022TD-30), and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2024JC-YBMS-384).
    [1]

    Li X H, Ding J N, Tang Z, Lin X Y, Dong H, Wu A H, Jiang L W 2024 Ceram. Int. 50 20Google Scholar

    [2]

    Wang L, Zhang Y, Gao D, Sha X, Chen X, Zhang Y, Zhang J, Zhang X, Cao Y, Wang Y, Li X, Xu S, Yu H, Chen B J 2024 Results Phys. 56 107238Google Scholar

    [3]

    王国静 2021 硕士学位论文 (保定: 河北大学)

    Wang G J 2021 M. S. Thesis (Baoding: Hebei University

    [4]

    王新瑞 2020 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Wang X R 2020 M. S. Thesis (Harbin: Harbin Institute of technology

    [5]

    王贵民 2021 硕士学位论文(南京: 南京邮电大学)

    Wang G M 2021 M. S. Thesis (Nanjing: Nanjing university of posts and telecommunications

    [6]

    Cao R P, Tu Y F, Chen T, Li L, Lan B, Liu R, Luo Z Y, Yi X H 2023 J. Optics-UK. 52 1278Google Scholar

    [7]

    Dalal H, Kumar M, Kaushik S, Sehrawat P, Sheoran M, Sehrawat N, Malik R K 2023 J. Electron. Mater. 52 2780Google Scholar

    [8]

    Xiao Z L, Ye J T, Wu B K, Wang F Z, Li J H, Zhang B H, Liu W Z, Han L, You W X 2022 Appl. Phys. A 128 1Google Scholar

    [9]

    Chauhan V, Dixit P, Pandey P C 2021 J. Rare Earth 39 1336Google Scholar

    [10]

    陆逸, 许英朝, 孟宪国, 鹿晨东, 杨伟斌, 吴盼盼, 刘月 2024 中国稀土学报 42 216

    Lu Y, Xu Y C, Meng X G, Lu C D, Yang W B, Wu P P, Liu Y 2024 J. Rare Earth 42 216

    [11]

    Wang C W, Peng L X, Qin F, Kou M, Wang Y D, Xu L L, Zhang Z G 2024 Opt. Mater. 154 115741

    [12]

    Zhao J X, Zhang Y, Wang T A, Guan L, Dong G Y, Liu Z Y, Fu N, Wang F H, Li X, 2023 Ceram. Int. 49 29505Google Scholar

    [13]

    杨伟斌, 熊飞兵, 杨寅, 周琼, 谢岚驰, 凌爽, 罗新 2022 发光学报 43 879Google Scholar

    Yang W B, Xiong F B, Yang Y, Zhou Q, Xie L C, Ling S, Luo X 2022 Chin. J. Lumin. 43 879Google Scholar

    [14]

    任艳东, 吕树臣 2011 物理学报 60 087804Google Scholar

    Ren Y D, Lv S C, 2011 Acta Phys. Sin. 60 087804Google Scholar

    [15]

    赵聪, 孟庆裕, 孙文军 2015 物理学报 64 107803Google Scholar

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803Google Scholar

    [16]

    Ju Z H, Wei R P, Ma J X, Pang C R, Liu W S 2010 J. Alloys Compds. 507 133Google Scholar

    [17]

    Yang R Q, Li J, Xie X J, Lian J J, Wang C Y, Li C L, Su H R, Zou Z Q, Xie S A, Yu R J 2024 J. Lumin. 267 120366Google Scholar

    [18]

    关丽, 魏伟, 刘超, 郭树青, 李旭, 杨志平 2013 硅酸盐学报 41 62Google Scholar

    Guan L, Wei W, Liu Chao, Guo S Q, Li X, Yang Z P 2013 J. Chin. Ceram. Soc. 41 62Google Scholar

    [19]

    韩建伟, 林林, 童玉清, 羊富强, 曹林, 刘行仁 2012 稀土 33 50

    Han J W, Lin L, Tong Y Q, Yang F Q, Cao L, Liu X R 2012 Chin. Rare Earths 33 50

    [20]

    Yu Z M, Luo Z Y, Liu X R, Pun E Y B, Lin H 2019 Opt. Mater. 93 76Google Scholar

    [21]

    骆志杨 2020 硕士学位论文(大连: 大连工业大学)

    Luo Z Y 2020 M. S. Thesis (Dalian: Dalian Polytechnic University

    [22]

    Chen J Q, Chen J Y, Zhang W N, Xu S J, Chen L P, Guo H 2023 Ceram. Int. 49 16252Google Scholar

    [23]

    Jiang K Z, Zhou C, Li W H, Su H R, He D M, Chen X Y, Zhang D, Xie S A, Yu R J 2024 J. Alloys Compds. 980 173518Google Scholar

    [24]

    Fan M H, Liu S, Yang K, Guo J, Wang J X, Wang X H, Liu Q, Wei B 2020 Ceram. Int. 46 6926Google Scholar

    [25]

    Cao R P, Wang X T, Jiao Y M, Ouyang X, Guo S L, Liu P, Ao H, Cao C Y 2019 J. Lumin. 212 23Google Scholar

    [26]

    Ogugua S N, Shaat S K K, Swart H C, Kroon R E, Ntwaeaborwa O M 2019 J. Alloys Compds. 775 950Google Scholar

    [27]

    樊霞霞, 高志翔, 屈文山, 田翠锋, 李建刚, 李伟, 董丽娟, 石云龙 2022 无机化学学报 38 1016Google Scholar

    Fan X X, Gao Z X, Qu W S, Tian C F, Li J G, Li W, Dong L J, Shi Y L 2022 Inorg. Chim. 38 1016Google Scholar

    [28]

    Kumar I, Gathania A K 2022 J. Mater. Sci. Mater. El. 33 328Google Scholar

    [29]

    Sun G H, Chen Q L 2023 J. Alloys Compds. 936 168263Google Scholar

    [30]

    Zhao C C, Yin X, Huang F Q, Hang Y 2011 J. Solid State Chem. 184 3190Google Scholar

    [31]

    Li H, Li L, Zhao W, Zhou X, Hua Y 2023 Mater. Today Chem. 32 101661Google Scholar

    [32]

    Ji C Y, Huang Z, Tian X Y 2020 J. Alloys Compds. 825 154176Google Scholar

    [33]

    Liu H K, Nie K, Zhang Y Y, Mei L F, Deyneko D V, Ma X X 2023 J. Rare Earth 41 1288Google Scholar

    [34]

    阿依努热木·吐尔逊, 王磊, 苏比伊努尔·吉力力, 艾尔肯·斯地克 2022 激光与光电子学进展 59 329

    Ayinuremu T, Wang L, Subiyinuer J, Aierken S 2022 Prog. Laser Optoelectron. 59 329

    [35]

    Yang Y, Pan H, Guan L, Wang D W, Zhao J X, Yang J F, Yang Z P, Li X 2020 J. Mater. Res. Technol. 9 3847Google Scholar

    [36]

    Liu Y Y, Shi W, Liao D L, Yang X Y, Gao J, Ma Z J, Guo J, Gong N, Liu L, Chang M X, Deng B, Yu R J 2021 J. Am. Ceram. Soc. 104 5966Google Scholar

    [37]

    Tang Z, Sun Z G, Zheng Y Q, Chen G J, Li X H, Jiang L W 2023 Ceram. Int. 49 10064Google Scholar

    [38]

    张恒, 陈伟, 姜锋, 朱德生 2023 稀土 44 28

    Zhang H, Chen W, Jiang F, Zhu D S 2023 Chin. Rare Earths. 44 28

    [39]

    Wang J X, Guo J, Lv Q Y, Ma Z J, Feng X Y, Lu Y H, Gao J, Chen W S, Deng B, Yu R J 2022 J. Lumin. 241 118459Google Scholar

    [40]

    Mu Y X, Yao J H, Wan X M, Mao X J, Luo L H 2022 J. Alloys Compd. 909 164801Google Scholar

    [41]

    Xue J P, Song M J, Noh H M, Park S H, Lee B R, Kim J H, Jeong J H 2020 J. Alloys Compds. 817 152705Google Scholar

    [42]

    Han B J, Ren J, Teng P P, Zhu J B, Shen Y, Li Z A, Zhu X L, Yang X H 2022 Ceram. Int. 48 971Google Scholar

    [43]

    Zhang Z C, Ran W G, Wang F K, Jiang H X, Yan T J 2024 Ceram. Int. 50 5614Google Scholar

    [44]

    Huo X X, Wang Z J, Tao C J, Zhang N, Wang D W, Zhao J X, Yang Z P, Li P L 2022 J. Alloys Compds. 902 163823Google Scholar

    [45]

    Du H Y, Zhu G, Li Z W, Li S S, He M, Bi Z H, Xin S Y 2023 Spectrochim. Acta A 302 123134Google Scholar

    [46]

    Chen J X, He D M, Wang W X, Li S L, Zou Z Q, Liu J H, Wang Y, Chen X Y, Zheng L L, Xie S A, Yu R J 2024 J. Lumin. 265 120252Google Scholar

    [47]

    Cui R R, Guo X, Deng C Y 2020 J. Lumin. 224 117233Google Scholar

    [48]

    Wu G D, Xue J Q, Li X Y, Bi Q, Sheng M J, Leng Z H 2023 Ceram. Int. 49 10615Google Scholar

  • 图 1  样品的物相分析与结构 (a) Li2Gd4(MoO4)7:x Sm3+ (x = 0.01, 0.07, 0.13)的XRD图谱; (b) Li2Gd4(MoO4)7的晶体结构

    Fig. 1.  Phase analysis and structrue of samples: (a) XRD patterns of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01, 0.07, 0.13); (b) crystal structure of Li2Gd4(MoO4)7.

    图 2  Li2Gd4(MoO4)7:0.07Sm3+荧光粉的形貌分析 (a) SEM图; (b)—(g)各元素分布图和EDS能谱图

    Fig. 2.  Morphology analysis of Li2Gd4(MoO4)7:0.07Sm3+: (a) SEM image; (b)–(g) distribution of elements and EDS energy spectrum.

    图 3  (a) Li2Gd4(MoO4)7:0.07Sm3+荧光粉XPS全谱; (b)—(f) Li 1s, Gd 4d, Mo 3d, O 1s和Sm 3d核心级频谱

    Fig. 3.  (a) Full XPS spectrum of Li2Gd4(MoO4)7:0.07Sm3+ phosphor; (b)–(f) Li 1s, Gd 4d, Mo 3d, O 1s and Sm 3d core-level spectra.

    图 4  Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13)样品的荧光光谱 (a) 激发光谱; (b) 发射光谱

    Fig. 4.  Fluorescence spectra of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01–0.13) samples: (a) Excitation spectra; (b) emission spectra.

    图 5  (a) Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13)的发射光谱; (b) 发射强度与Sm3+掺杂浓度的关系图; (c) lg(I/x)与lg(x)的关系曲线; (d) Sm3+的掺杂浓度与598, 645 nm处发射峰积分面积关系图

    Fig. 5.  (a) Emission spectra of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01–0.13); (b) the relationship between emission intensity and Sm3+ doping concentration; (c) lg(I/x)-lg(x); (d) the relationship between the concentration of Sm3+ and the emission integral intensity at 598 nm and 645 nm.

    图 6  荧光衰减曲线和发光机理 (a) Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13)系列样品在645 nm处的寿命衰减曲线(λex = 406 nm); (b) Sm3+的能级跃迁图

    Fig. 6.  Fluorescence attenuation curves and luminescence mechanism: (a) Lifetime decay curves of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01–0.13) at 645 nm (λex = 406 nm); (b) energy level transition diagram of Sm3+.

    图 7  (a) Li2Gd4(MoO4)7:0.07Sm3+荧光粉在不同温度下的发光光谱; (b) 样品在298—448 K范围内的热行为映射图; (c) 归一化发光强度随温度的变化; (d) $\ln[(I_0/I) - 1]$与10000/T关系

    Fig. 7.  (a) Luminescence spectra of Li2Gd4(MoO4)7:0.07Sm3+ phosphor at different temperatures; (b) the thermal behavior mapping diagram of sample in the range of 298–448 K; (c) the normalized luminescence intensity varies with temperature; (d) the relationship between $\ln[(I_0/I) -1] $ of phosphor and 10000/T.

    图 8  (a) Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13)荧光粉在406 nm激发下的色坐标图; (b) Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13)的色度坐标x, y点线图

    Fig. 8.  (a) Color coordinates of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01–0.13) excited at 406 nm; (b) the chromaticity coordinates x, y point plot of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01–0.13).

    图 9  (a) Li2Gd4(MoO4)7:0.07Sm3+的内量子效率和放大图; (b)白光LED装置的色坐标、电致发光光谱及照片

    Fig. 9.  (a) Internal quantum efficiency of Li2Gd4(MoO4)7:0.07Sm3+ and enlarged profile; (b) the color coordinates, electroluminescence spectrum and LED image of the fabricated w-LED.

    表 1  Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13)的CIE色度坐标及色纯度

    Table 1.  The CIE coordinates and color purity of Li2Gd4(MoO4)7:x Sm3+ (x = 0.01—0.13).

    Concentration of Sm3+ CIE coordinates
    (x, y)
    Color purity/%
    x = 0.01 (0.6311, 0.3682) 99.77
    x = 0.03 (0.6314, 0.3679) 99.86
    x = 0.05 (0.6315, 0.3678) 99.89
    x = 0.07 (0.6315, 0.3679) 99.89
    x = 0.09 (0.6318, 0.3676) 99.98
    x = 0.11 (0.6313, 0.3680) 99.83
    x = 0.01 (0.6312, 0.3681) 99.80
    下载: 导出CSV
  • [1]

    Li X H, Ding J N, Tang Z, Lin X Y, Dong H, Wu A H, Jiang L W 2024 Ceram. Int. 50 20Google Scholar

    [2]

    Wang L, Zhang Y, Gao D, Sha X, Chen X, Zhang Y, Zhang J, Zhang X, Cao Y, Wang Y, Li X, Xu S, Yu H, Chen B J 2024 Results Phys. 56 107238Google Scholar

    [3]

    王国静 2021 硕士学位论文 (保定: 河北大学)

    Wang G J 2021 M. S. Thesis (Baoding: Hebei University

    [4]

    王新瑞 2020 硕士学位论文(哈尔滨: 哈尔滨工业大学)

    Wang X R 2020 M. S. Thesis (Harbin: Harbin Institute of technology

    [5]

    王贵民 2021 硕士学位论文(南京: 南京邮电大学)

    Wang G M 2021 M. S. Thesis (Nanjing: Nanjing university of posts and telecommunications

    [6]

    Cao R P, Tu Y F, Chen T, Li L, Lan B, Liu R, Luo Z Y, Yi X H 2023 J. Optics-UK. 52 1278Google Scholar

    [7]

    Dalal H, Kumar M, Kaushik S, Sehrawat P, Sheoran M, Sehrawat N, Malik R K 2023 J. Electron. Mater. 52 2780Google Scholar

    [8]

    Xiao Z L, Ye J T, Wu B K, Wang F Z, Li J H, Zhang B H, Liu W Z, Han L, You W X 2022 Appl. Phys. A 128 1Google Scholar

    [9]

    Chauhan V, Dixit P, Pandey P C 2021 J. Rare Earth 39 1336Google Scholar

    [10]

    陆逸, 许英朝, 孟宪国, 鹿晨东, 杨伟斌, 吴盼盼, 刘月 2024 中国稀土学报 42 216

    Lu Y, Xu Y C, Meng X G, Lu C D, Yang W B, Wu P P, Liu Y 2024 J. Rare Earth 42 216

    [11]

    Wang C W, Peng L X, Qin F, Kou M, Wang Y D, Xu L L, Zhang Z G 2024 Opt. Mater. 154 115741

    [12]

    Zhao J X, Zhang Y, Wang T A, Guan L, Dong G Y, Liu Z Y, Fu N, Wang F H, Li X, 2023 Ceram. Int. 49 29505Google Scholar

    [13]

    杨伟斌, 熊飞兵, 杨寅, 周琼, 谢岚驰, 凌爽, 罗新 2022 发光学报 43 879Google Scholar

    Yang W B, Xiong F B, Yang Y, Zhou Q, Xie L C, Ling S, Luo X 2022 Chin. J. Lumin. 43 879Google Scholar

    [14]

    任艳东, 吕树臣 2011 物理学报 60 087804Google Scholar

    Ren Y D, Lv S C, 2011 Acta Phys. Sin. 60 087804Google Scholar

    [15]

    赵聪, 孟庆裕, 孙文军 2015 物理学报 64 107803Google Scholar

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803Google Scholar

    [16]

    Ju Z H, Wei R P, Ma J X, Pang C R, Liu W S 2010 J. Alloys Compds. 507 133Google Scholar

    [17]

    Yang R Q, Li J, Xie X J, Lian J J, Wang C Y, Li C L, Su H R, Zou Z Q, Xie S A, Yu R J 2024 J. Lumin. 267 120366Google Scholar

    [18]

    关丽, 魏伟, 刘超, 郭树青, 李旭, 杨志平 2013 硅酸盐学报 41 62Google Scholar

    Guan L, Wei W, Liu Chao, Guo S Q, Li X, Yang Z P 2013 J. Chin. Ceram. Soc. 41 62Google Scholar

    [19]

    韩建伟, 林林, 童玉清, 羊富强, 曹林, 刘行仁 2012 稀土 33 50

    Han J W, Lin L, Tong Y Q, Yang F Q, Cao L, Liu X R 2012 Chin. Rare Earths 33 50

    [20]

    Yu Z M, Luo Z Y, Liu X R, Pun E Y B, Lin H 2019 Opt. Mater. 93 76Google Scholar

    [21]

    骆志杨 2020 硕士学位论文(大连: 大连工业大学)

    Luo Z Y 2020 M. S. Thesis (Dalian: Dalian Polytechnic University

    [22]

    Chen J Q, Chen J Y, Zhang W N, Xu S J, Chen L P, Guo H 2023 Ceram. Int. 49 16252Google Scholar

    [23]

    Jiang K Z, Zhou C, Li W H, Su H R, He D M, Chen X Y, Zhang D, Xie S A, Yu R J 2024 J. Alloys Compds. 980 173518Google Scholar

    [24]

    Fan M H, Liu S, Yang K, Guo J, Wang J X, Wang X H, Liu Q, Wei B 2020 Ceram. Int. 46 6926Google Scholar

    [25]

    Cao R P, Wang X T, Jiao Y M, Ouyang X, Guo S L, Liu P, Ao H, Cao C Y 2019 J. Lumin. 212 23Google Scholar

    [26]

    Ogugua S N, Shaat S K K, Swart H C, Kroon R E, Ntwaeaborwa O M 2019 J. Alloys Compds. 775 950Google Scholar

    [27]

    樊霞霞, 高志翔, 屈文山, 田翠锋, 李建刚, 李伟, 董丽娟, 石云龙 2022 无机化学学报 38 1016Google Scholar

    Fan X X, Gao Z X, Qu W S, Tian C F, Li J G, Li W, Dong L J, Shi Y L 2022 Inorg. Chim. 38 1016Google Scholar

    [28]

    Kumar I, Gathania A K 2022 J. Mater. Sci. Mater. El. 33 328Google Scholar

    [29]

    Sun G H, Chen Q L 2023 J. Alloys Compds. 936 168263Google Scholar

    [30]

    Zhao C C, Yin X, Huang F Q, Hang Y 2011 J. Solid State Chem. 184 3190Google Scholar

    [31]

    Li H, Li L, Zhao W, Zhou X, Hua Y 2023 Mater. Today Chem. 32 101661Google Scholar

    [32]

    Ji C Y, Huang Z, Tian X Y 2020 J. Alloys Compds. 825 154176Google Scholar

    [33]

    Liu H K, Nie K, Zhang Y Y, Mei L F, Deyneko D V, Ma X X 2023 J. Rare Earth 41 1288Google Scholar

    [34]

    阿依努热木·吐尔逊, 王磊, 苏比伊努尔·吉力力, 艾尔肯·斯地克 2022 激光与光电子学进展 59 329

    Ayinuremu T, Wang L, Subiyinuer J, Aierken S 2022 Prog. Laser Optoelectron. 59 329

    [35]

    Yang Y, Pan H, Guan L, Wang D W, Zhao J X, Yang J F, Yang Z P, Li X 2020 J. Mater. Res. Technol. 9 3847Google Scholar

    [36]

    Liu Y Y, Shi W, Liao D L, Yang X Y, Gao J, Ma Z J, Guo J, Gong N, Liu L, Chang M X, Deng B, Yu R J 2021 J. Am. Ceram. Soc. 104 5966Google Scholar

    [37]

    Tang Z, Sun Z G, Zheng Y Q, Chen G J, Li X H, Jiang L W 2023 Ceram. Int. 49 10064Google Scholar

    [38]

    张恒, 陈伟, 姜锋, 朱德生 2023 稀土 44 28

    Zhang H, Chen W, Jiang F, Zhu D S 2023 Chin. Rare Earths. 44 28

    [39]

    Wang J X, Guo J, Lv Q Y, Ma Z J, Feng X Y, Lu Y H, Gao J, Chen W S, Deng B, Yu R J 2022 J. Lumin. 241 118459Google Scholar

    [40]

    Mu Y X, Yao J H, Wan X M, Mao X J, Luo L H 2022 J. Alloys Compd. 909 164801Google Scholar

    [41]

    Xue J P, Song M J, Noh H M, Park S H, Lee B R, Kim J H, Jeong J H 2020 J. Alloys Compds. 817 152705Google Scholar

    [42]

    Han B J, Ren J, Teng P P, Zhu J B, Shen Y, Li Z A, Zhu X L, Yang X H 2022 Ceram. Int. 48 971Google Scholar

    [43]

    Zhang Z C, Ran W G, Wang F K, Jiang H X, Yan T J 2024 Ceram. Int. 50 5614Google Scholar

    [44]

    Huo X X, Wang Z J, Tao C J, Zhang N, Wang D W, Zhao J X, Yang Z P, Li P L 2022 J. Alloys Compds. 902 163823Google Scholar

    [45]

    Du H Y, Zhu G, Li Z W, Li S S, He M, Bi Z H, Xin S Y 2023 Spectrochim. Acta A 302 123134Google Scholar

    [46]

    Chen J X, He D M, Wang W X, Li S L, Zou Z Q, Liu J H, Wang Y, Chen X Y, Zheng L L, Xie S A, Yu R J 2024 J. Lumin. 265 120252Google Scholar

    [47]

    Cui R R, Guo X, Deng C Y 2020 J. Lumin. 224 117233Google Scholar

    [48]

    Wu G D, Xue J Q, Li X Y, Bi Q, Sheng M J, Leng Z H 2023 Ceram. Int. 49 10615Google Scholar

  • [1] 阮远东, 章志昊, 贾茳勰, 顾煜宁, 张善端, 崔旭高, 洪葳, 白彦峥, 田朋飞. 空间引力波探测中电荷管理系统的紫外光源应用. 物理学报, 2024, 73(22): 220401. doi: 10.7498/aps.73.20241115
    [2] 罗杰, 张子秋, 徐俊豪, 秦兆婷, 赵元帅, 何洪, 李冠男, 唐剑锋. 稀土掺杂Gd2Te4O11亚碲酸盐荧光粉的合成及其发光性能. 物理学报, 2023, 72(1): 017801. doi: 10.7498/aps.72.20221341
    [3] 吕兆承, 李营, 全桂英, 郑庆华, 周薇薇, 赵旺. 近紫外宽带激发LED用红色荧光粉(Gd1-xEux)6(Te1-yMoy)O12的制备与性能. 物理学报, 2017, 66(11): 117801. doi: 10.7498/aps.66.117801
    [4] 刘文全, 朝克夫, 武文杰, 包富泉, 周炳卿. CaAlSiN3:Eu2+红色荧光粉的常压氮化制备及发光性能. 物理学报, 2016, 65(20): 207801. doi: 10.7498/aps.65.207801
    [5] 陈乔乔, 戴能利, 刘自军, 褚应波, 李进延, 杨旅云. 不同激发波长下Ce3+-Tb3+-Sm3+共掺白光玻璃的发光性能. 物理学报, 2014, 63(7): 077803. doi: 10.7498/aps.63.077803
    [6] 任国浩, 裴钰, 吴云涛, 陈晓峰, 李焕英, 潘尚可. 铈离子掺杂浓度对氯化镧(LaCl3:Ce)闪烁晶体发光性能的影响. 物理学报, 2014, 63(3): 037802. doi: 10.7498/aps.63.037802
    [7] 周仁迪, 黄雪飞, 齐智坚, 黄维刚. Ca2Si(O4-xNx):Eu2+绿色荧光粉的制备及其发光性能. 物理学报, 2014, 63(19): 197801. doi: 10.7498/aps.63.197801
    [8] 罗林龄, 唐科, 朱达川, 韩涛, 赵聪. Li+和Er3+掺杂对Ba2SiO4:Eu2+发光性能的影响. 物理学报, 2013, 62(15): 157802. doi: 10.7498/aps.62.157802
    [9] 徐昕伟, 崔碧峰, 朱彦旭, 郭伟玲, 李伟国. 利用介质光子晶体提高红光发光二极管的光通量的研究. 物理学报, 2012, 61(15): 154213. doi: 10.7498/aps.61.154213
    [10] 钱可元, 马骏, 付伟, 罗毅. 基于Mie散射理论的白光发光二极管荧光粉散射特性研究. 物理学报, 2012, 61(20): 204201. doi: 10.7498/aps.61.204201
    [11] 王倩, 慈志鹏, 王育华, 朱革, 温艳, 刘碧桃, 阙美丹. Mg5SnB2O10:Eu3+, Bi3+—-一种用于发光二极管的红色荧光粉的制备及其发光性能的研究. 物理学报, 2012, 61(21): 217802. doi: 10.7498/aps.61.217802
    [12] 何伟, 张约品, 王金浩, 王实现, 夏海平. Tb3+掺杂的氟氧碲酸盐玻璃发光性能. 物理学报, 2011, 60(4): 042901. doi: 10.7498/aps.60.042901
    [13] 王兵, 李志聪, 姚然, 梁萌, 闫发旺, 王国宏. GaN基发光二极管外延中p型AlGaN电子阻挡层的优化生长. 物理学报, 2011, 60(1): 016108. doi: 10.7498/aps.60.016108
    [14] 杨志平, 马欣, 赵盼盼, 宋兆丰. SrAl2B2O7:Dy3+材料的制备及其发光性能. 物理学报, 2010, 59(8): 5387-5391. doi: 10.7498/aps.59.5387
    [15] 刘元红, 庄卫东, 高文贵, 胡运生, 何涛, 何华强. 硼酸对亚微米级Ca3Sc2Si3O12:Ce绿色荧光粉的制备及发光性能的影响. 物理学报, 2010, 59(11): 8200-8204. doi: 10.7498/aps.59.8200
    [16] 丁旭, 徐琰, 郭崇峰. 蓝色荧光粉Sr2B5O9Cl:Eu2+发光特性的研究. 物理学报, 2010, 59(9): 6632-6636. doi: 10.7498/aps.59.6632
    [17] 佟金刚, 吴春芳, 王育华, 陈佐惠. 纳米棒状GdPO4:Eu3+荧光粉的合成及其发光性能的研究. 物理学报, 2009, 58(1): 585-589. doi: 10.7498/aps.58.585
    [18] 赵 星, 方志良, 母国光. LED投影光源的色度学特性研究. 物理学报, 2007, 56(5): 2537-2540. doi: 10.7498/aps.56.2537
    [19] 李家成, 薛天锋, 范有余, 李顺光, 胡和方. Ce3+对Er3+/Yb3+共掺TeO2-WO3-ZnO玻璃发光性能的影响. 物理学报, 2006, 55(2): 923-928. doi: 10.7498/aps.55.923
    [20] 杨志平, 刘玉峰. Eu2+激活的Ca3SiO5绿色荧光粉的制备和发光特性研究. 物理学报, 2006, 55(9): 4946-4950. doi: 10.7498/aps.55.4946
计量
  • 文章访问数:  893
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-21
  • 修回日期:  2024-08-09
  • 上网日期:  2024-09-25
  • 刊出日期:  2024-11-05

/

返回文章
返回