搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态照明用Li2Gd4(MoO4)7:Sm3+橙红色荧光粉的结构和发光特性

禄靖雯 赵瑾 张永春 涂茹婷 刘馥妮 冷稚华

引用本文:
Citation:

固态照明用Li2Gd4(MoO4)7:Sm3+橙红色荧光粉的结构和发光特性

禄靖雯, 赵瑾, 张永春, 涂茹婷, 刘馥妮, 冷稚华

Structure and luminescence properties of Li2Gd4(MoO4)7: Sm3+ orange-red phosphor for solid-state lighting

Jingwen Lu, Jin Zhao, Yongchun Zhang, Ruting Tu, Funi Liu, Zhihua Leng
PDF
导出引用
  • 白光LED具有广阔的应用前景与市场需求,而红色荧光粉对改善器件性能至关重要。本文采用高温固相法制备了一系列Li2Gd4-xSmx(MoO4)7(x=0.01-0.13)荧光粉,利用X射线衍射、扫描电子显微镜、X射线光电子能谱和荧光光谱仪对样品进行了表征。在406 nm激发下,Li2Gd4(MoO4)7:Sm3+荧光粉的发射峰分别位于563、598、645、706 nm处,这是由于Sm3+的4f-4f跃迁引起的。当Sm3+浓度为0.07时发光最强,浓度猝灭主要归因于电偶极-电偶极相互作用。随着Sm3+浓度的增加,荧光寿命逐渐缩短。在温度依赖性发射光谱的研究中,发现423 K时Li2Gd4(MoO4)7:0.07Sm3+的发射强度依然保持在298 K时的79%,显示了样品优良的热稳定性。CIE色度图确认了该荧光粉的发射位于橙红色区域。进一步利用最佳样品制作了白光LED,其CIE色坐标为(0.3788,0.3134),位于白光圈内。研究表明Li2Gd4(MoO4)7:Sm3+荧光粉是一种很有前途的白光LED用橙红色荧光粉。
    White LEDs have a broad application prospects and market demand, while the red phosphor play a big impact on the color temperature and color rendering index of the modulated white light. In this paper, a series of Li2Gd4-xSmx(MoO4)7(x=0.01-0.13) phosphors were prepared by high temperature solid phase method. The successful doping of Sm3+ into Li2Gd4(MoO4)7 was confirmed by X-ray diffractometry (XRD) and did not result in any change in crystal structure. The samples were detected by scanning electron microscope (SEM) as irregular blocky structures with particle size less than 20μm. The presence of Li, Gd, Mo, O and Sm elements in the phosphor was confirmed by energy dispersive X-ray spectroscopy (EDS). X-ray photoelectron spectroscopy (XPS) studies showed that the activator was successfully doped into materials. Under 406 nm excitation, the emission peaks of the sample are located at 563, 598, 645 and 706nm respectively, which are caused by the 4f-4f transition of Sm3+and the strongest emission peak comes from 4G5/26H9/2 transition. It was found that optimal concentration of Sm3+ is 0.07. With the increase of Sm3+ concentration, the fluorescence lifetime decreases gradually. The temperature-dependent emission of phosphor was also studied. The emission intensity at 473 K was still 79% of that at 298 K, indicating that the sample had excellent heat resistance. The CIE chromaticity diagram shows the luminescence of the prepared phosphor is located in the orange-red region and the color purity is high (99%). Moreover, a white LED is manufactured using the optical doped phosphor, which has CIE coordinates of (0.3788, 0.3134) and is located in the circle of white light. Research shows that Li2Gd4(MoO4)7: Sm3+ phosphor is a promising orange-red phosphor for white LEDs.
  • [1]

    Li X H, Ding J N, Tang Z, Lin X Y, Dong H, Wu A H, Jiang L W 2024 Ceram. Int. 50 20

    [2]

    Wang L, Zhang Y, Gao D, Sha X, Chen X, Zhang Y, Zhang J, Zhang X, Cao Y, Wang Y, Li X, Xu S, Yu H, Chen B J 2024 Results Phys. 56 107238

    [3]

    Wang G J 2021 M.S. Dissertation (Baoding: Hebei University) (in Chinese) [王国静 2021 硕士学位论文 (保定:河北大学)]

    [4]

    Wang X R 2020 M.S. Dissertation (Harbin: Harbin Institute of technology) (in Chinese) [王新瑞 2020 硕士学位论文(哈尔滨:哈尔滨工业大学)]

    [5]

    Wang G M 2021 M.S. Dissertation (Nanjing: Nanjing university of posts and telecommunications) (in Chinese) [王贵民 2021 硕士学位论文(南京:南京邮电大学)]

    [6]

    Cao R P, Tu Y F, Chen T, Li L, Lan B, Liu R, Luo Z Y, Yi X H 2023 J. Optics-UK. 52 1278

    [7]

    Dalal H, Kumar M, Kaushik S, Sehrawat P, Sheoran M, Sehrawat N, Malik R K 2023 J. Electron. Mater. 52 2780

    [8]

    Xiao Z L, Ye J T, Wu B K, Wang F Z, Li J H, Zhang B H, Liu W Z, Han L, You W X 2022 Appl. Phys. A 128 1

    [9]

    Chauhan V, Dixit P, Pandey P C 2021 J. Rare Earth 39 1336

    [10]

    Lu Y, Xu Y C, Meng X G, Lu C D, Yang W B, Wu P P, Liu Y 2024 J. Rare Earth 42 216 (in Chinese) [陆逸,许英朝,孟宪国,鹿晨东,杨伟斌,吴盼盼,刘月 2024 中国稀土学报 42 216]

    [11]

    Wang C W, Peng L X, Qin F, Kou M, Wang Y D, Xu L L, Zhang Z G 2024 Opt. Mater. 115741

    [12]

    Zhao J, Zhang Y, Wang T, Guan L, Dong G, Liu Z, Fu N, Wang F, Li X, 2023 Ceram. Int. 49 29505

    [13]

    Yang W B, Xiong F B, Yang Y, Zhou Q, Xie L C, Ling S, Luo X 2022 Chin. J. Lumin. 43 879 (in Chinese) [杨伟斌,熊飞兵,杨寅,周 琼,谢岚驰,凌 爽,罗 新 2022 发光学报 43 879]

    [14]

    Ren Y D, Lv S C, 2011 Acta Phys. Sin. 60 679 (in Chinese) [任艳东,吕树臣 2011 物理学报 60 679]

    [15]

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 287 (in Chinese) [赵聪,孟庆裕,孙文军 2015 物理学报 64 287]

    [16]

    Ju Z H, Wei R P, Ma J X, Pang C R, Liu W S 2010 J. Alloys Compds. 507 133

    [17]

    Yang R Q, Li J, Xie X J, Lian J J, Wang C Y, Li C L, Su H R, Zou Z Q, Xie S A,Yu R J 2024 J. Lumin. 267 120366

    [18]

    Guan L, Wei W, Liu Chao, Guo S Q, Li X, Yang Z P 2013 J. Chin. Ceram. Soc. 41 62 (in Chinese) [关丽,魏伟,刘超,郭树青,李旭,杨志平 硅酸盐学报 41 62]

    [19]

    Han J W, Lin L, Tong Y Q, Yang F Q,Cao L, Liu X R 2012 Chinese Rare Earths. 33 50 (in Chinese) [韩建伟,林林,童玉清,羊富强,曹林,刘行仁 2012 稀土 33 50]

    [20]

    Yu Z M, Luo Z Y, Liu X R, Pun E Y B, Lin H 2019 Opt. Mater. 93 76

    [21]

    Luo Z Y 2020 M.S. Dissertation (Dalian: Dalian Polytechnic University) (in Chinese) [骆志杨 2020 硕士学位论文(大连:大连工业大学)]

    [22]

    Chen J Q, Chen J Y, Zhang W N, Xu S J, Chen L P, Guo H 2023 Ceram. Int. 49 16252

    [23]

    Jiang K Z, Zhou C, Li W H, Su H R, He D M, Chen X Y, Zhang D, Xie S A, Yu R J 2024 J. Alloys Compds. 980 173518

    [24]

    Fan M H, Liu S, Yang K, Guo J, Wang J X, Wang X H, Liu Q, Wei B 2020 Ceram. Int. 46 6926

    [25]

    Cao R P, Wang X T, Jiao Y M, Ouyang X, Guo S L, Liu P, Ao H, Cao C Y 2019 J. Lumin. 212 23

    [26]

    Ogugua S N, Shaat S K K, Swart H C, Kroon R E, Ntwaeaborwa O M 2019 J. Alloys Compds. 775 950

    [27]

    Fan X X, Gao Z X, Qu W S, Tian C F, Li J G, Li W, Dong L J, Shi Y L 2022 Inorg. Chim. 38 1016 [樊霞霞,高志翔,屈文山,田翠锋,李建刚,李伟,董丽娟,石云龙 2022 无机化学学报 38 1016]

    [28]

    Kumar I, Gathania A K 2022 J. Mater. Sci-Mater. El. 33 328

    [29]

    Sun G H, Chen Q L 2023 J. Alloys Compds. 936 168263

    [30]

    Zhao C C, Yin X, Huang F Q, Hang Y 2011 J. Solid State Chem. 184 3190

    [31]

    Li H, Li L, Zhao W, Zhou X, Hua Y 2023 Mater. Today Chem. 32 101661

    [32]

    Ji C Y, Huang Z, Tian X Y 2020 J. Alloys Compds. 825 154176

    [33]

    Liu H K, Nie K, Zhang Y Y, Mei L F, Deyneko D V, Ma X X 2023 J. Rare Earth 41 1288

    [34]

    Ayinuremu T, Wang L, Subiyinuer J, Aierken S 2022 Progress in Laser and Optoelectronics. 59 329 (in Chinese) [阿依努热木·吐尔逊,王磊,苏比伊努尔·吉力力,艾尔肯·斯地克 2022 激光与光电子学进展 59 329]

    [35]

    Yang Y, Pan H, Guan L, Wang D W, Zhao J X, Yang J F, Yang Z P, Li X 2020 J. Mater. Res Technol. 9 3847

    [36]

    Liu Y Y, Shi W, Liao D L, Yang X Y, Gao J, Ma Z J, Guo J, Gong N, Liu L, Chang M X, Deng B, Yu R J 2021 J. Am. Ceram. Soc. 104 5966

    [37]

    Tang Z, Sun Z G, Zheng Y Q, Chen G J, Li X H, Jiang L W 2023 Ceram. Int. 49 10064

    [38]

    Zhang H, Chen W, Jiang F, Zhu D S 2023 Chinese Rare Earths. 44 28 (in Chinese) [张恒,陈伟,姜锋,朱德生 2023 稀土 44 28]

    [39]

    Wang J X, Guo J, Lv Q Y, Ma Z J, Feng X Y, Lu Y H, Gao J, Chen W S, Deng B, Yu R J 2022 J. Lumin. 241 118459

    [40]

    Mu Y, Yao J, Wan X, Mao X, Luo L 2022 J. Alloys Compd. 909 164801

    [41]

    Xue J P, Song M J, Noh H M, Park S H, Lee B R, Kim J H, Jeong J H 2020 J. Alloys Compds. 817 152705

    [42]

    Han B J, Ren J, Teng P P, Zhu J B, Shen Y, Li Z A, Zhu X L, Yang X H 2022 Ceram. Int. 48 971

    [43]

    Zhang Z C, Ran W G, Wang F K, Jiang H X, Yan T J 2024 Ceram. Int. 50 5614

    [44]

    Huo X X, Wang Z J, Tao C J, Zhang N, Wang D W, Zhao J X, Yang Z P, Li P L 2022 J. Alloys Compds. 902 163823

    [45]

    Du H Y, Zhu G, Li Z W, Li S S, He M, Bi Z H, Xin S Y 2023 Spectrochim. Acta. A 302 123134

    [46]

    Chen J X, He D M, Wang W X, Li S L, Zou Z Q, Liu J H, Wang Y, Chen X Y, Zheng L L, Xie S A, Yu R J 2024 J. Lumin. 265 120252

    [47]

    Cui R R, Guo X, Deng C Y 2020 J. Lumin. 224 117233

    [48]

    Wu G, Xue J, Li X, Bi Q, Sheng M, Leng Z, 2023 Ceram. Int. 49 10615

  • [1] 罗杰, 张子秋, 徐俊豪, 秦兆婷, 赵元帅, 何洪, 李冠男, 唐剑锋. 稀土掺杂Gd2Te4O11亚碲酸盐荧光粉的合成及其发光性能. 物理学报, doi: 10.7498/aps.72.20221341
    [2] 吕兆承, 李营, 全桂英, 郑庆华, 周薇薇, 赵旺. 近紫外宽带激发LED用红色荧光粉(Gd1-xEux)6(Te1-yMoy)O12的制备与性能. 物理学报, doi: 10.7498/aps.66.117801
    [3] 刘文全, 朝克夫, 武文杰, 包富泉, 周炳卿. CaAlSiN3:Eu2+红色荧光粉的常压氮化制备及发光性能. 物理学报, doi: 10.7498/aps.65.207801
    [4] 陈乔乔, 戴能利, 刘自军, 褚应波, 李进延, 杨旅云. 不同激发波长下Ce3+-Tb3+-Sm3+共掺白光玻璃的发光性能. 物理学报, doi: 10.7498/aps.63.077803
    [5] 任国浩, 裴钰, 吴云涛, 陈晓峰, 李焕英, 潘尚可. 铈离子掺杂浓度对氯化镧(LaCl3:Ce)闪烁晶体发光性能的影响. 物理学报, doi: 10.7498/aps.63.037802
    [6] 周仁迪, 黄雪飞, 齐智坚, 黄维刚. Ca2Si(O4-xNx):Eu2+绿色荧光粉的制备及其发光性能. 物理学报, doi: 10.7498/aps.63.197801
    [7] 罗林龄, 唐科, 朱达川, 韩涛, 赵聪. Li+和Er3+掺杂对Ba2SiO4:Eu2+发光性能的影响. 物理学报, doi: 10.7498/aps.62.157802
    [8] 农兰平, 蒋维. 铽配合物--蒙脱土新型复合发光材料的插层组装、表征和发光性能. 物理学报, doi: 10.7498/aps.61.057801
    [9] 徐昕伟, 崔碧峰, 朱彦旭, 郭伟玲, 李伟国. 利用介质光子晶体提高红光发光二极管的光通量的研究. 物理学报, doi: 10.7498/aps.61.154213
    [10] 钱可元, 马骏, 付伟, 罗毅. 基于Mie散射理论的白光发光二极管荧光粉散射特性研究. 物理学报, doi: 10.7498/aps.61.204201
    [11] 王倩, 慈志鹏, 王育华, 朱革, 温艳, 刘碧桃, 阙美丹. Mg5SnB2O10:Eu3+, Bi3+—-一种用于发光二极管的红色荧光粉的制备及其发光性能的研究. 物理学报, doi: 10.7498/aps.61.217802
    [12] 何伟, 张约品, 王金浩, 王实现, 夏海平. Tb3+掺杂的氟氧碲酸盐玻璃发光性能. 物理学报, doi: 10.7498/aps.60.042901
    [13] 王兵, 李志聪, 姚然, 梁萌, 闫发旺, 王国宏. GaN基发光二极管外延中p型AlGaN电子阻挡层的优化生长. 物理学报, doi: 10.7498/aps.60.016108
    [14] 杨志平, 马欣, 赵盼盼, 宋兆丰. SrAl2B2O7:Dy3+材料的制备及其发光性能. 物理学报, doi: 10.7498/aps.59.5387
    [15] 刘元红, 庄卫东, 高文贵, 胡运生, 何涛, 何华强. 硼酸对亚微米级Ca3Sc2Si3O12:Ce绿色荧光粉的制备及发光性能的影响. 物理学报, doi: 10.7498/aps.59.8200
    [16] 丁旭, 徐琰, 郭崇峰. 蓝色荧光粉Sr2B5O9Cl:Eu2+发光特性的研究. 物理学报, doi: 10.7498/aps.59.6632
    [17] 佟金刚, 吴春芳, 王育华, 陈佐惠. 纳米棒状GdPO4:Eu3+荧光粉的合成及其发光性能的研究. 物理学报, doi: 10.7498/aps.58.585
    [18] 赵 星, 方志良, 母国光. LED投影光源的色度学特性研究. 物理学报, doi: 10.7498/aps.56.2537
    [19] 李家成, 薛天锋, 范有余, 李顺光, 胡和方. Ce3+对Er3+/Yb3+共掺TeO2-WO3-ZnO玻璃发光性能的影响. 物理学报, doi: 10.7498/aps.55.923
    [20] 杨志平, 刘玉峰. Eu2+激活的Ca3SiO5绿色荧光粉的制备和发光特性研究. 物理学报, doi: 10.7498/aps.55.4946
计量
  • 文章访问数:  44
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-25

/

返回文章
返回