-
稀土离子掺杂荧光粉在照明、显示、防伪和光学测温等领域具有广阔的应用前景。本文采用高温固相法制备了Ca7NaY(PO4)6: xDy3+ (x = 0.01-0.11)系列荧光粉。通过X射线衍射和扫描电子显微镜对样品的晶体结构和微观形貌进行了表征,并采用荧光光谱和荧光寿命衰减曲线对其发光特性和能量传递机制进行了系统研究。在350 nm近紫外光激发下,样品的发光强度随Dy3+掺杂浓度增加呈现先递增后递减的变化趋势,在x =0.07时达到最大值。Dy3+浓度增加导致非辐射跃迁增强,荧光寿命逐渐降低。Ca7NaY(PO4)6: 0.07Dy3+在150 ℃高温下发光强度仍为室温时的86.9%,展现出优异的热稳定性。利用最佳样品与近紫外LED芯片封装所得白光LED器件性能优良,其相关色温为5680 K,色坐标位于(0.3275, 0.3883)。此外,基于荧光强度比技术的温度传感特性研究表明,该材料具备良好的光学测温潜力,最大相对灵敏度达到1.72% K-1。结果表明,Ca7NaY(PO4)6: Dy3+荧光粉在固态照明及光学温度传感领域具有潜在的应用价值。Rare earth-activated phosphors demonstrate significant application potential across various fields, including lighting, displays, anti-counterfeiting, and optical thermometry measurement. This study focuses on the development of multifunctional optical materials for lighting and temperature sensing through the synthesis of a series of Dy3+-doped Ca7NaY(PO4)6 phosphors via high-temperature solid-state reaction. The phase purity and morphological characteristics of the obtained samples were confirmed by X-ray diffraction and scanning electron microscopy. Luminescence properties and energy transfer mechanisms were systematically investigated through photoluminescence spectroscopy and fluorescence decay analysis. Under 350 nm near-ultraviolet excitation, the emission intensity of Ca7NaY(PO4)6: Dy3+ increases with rising Dy3+ concentration until reaching an optimal value at x = 0.07, beyond which concentration quenching occurs. This quenching behavior is attributed to enhanced non-radiative energy transfer at higher Dy3+ concentrations, leading to a corresponding decrease in fluorescence lifetime. The optimized Ca7NaY(PO4)6: 0.07Dy3+ phosphor displays remarkable thermal stability, retaining 86.9% of its initial emission intensity at 150 ℃. The white LED device fabricated using the obtained phosphor and near-UV LED chip shows excellent performance with a correlated color temperature of 5680 K, CIE coordinates of (0.3275, 0.3883) in the white light region and a color rendering index of 85. Furthermore, temperature-dependent fluorescence intensity ratio analysis reveals excellent optical thermometric performance, achieving a maximum relative sensitivity (Sr) of 1.72% K-1. These results indicate that the Ca7NaY(PO4)6: Dy3+ phosphor exhibits significant potential for application in single-matrix phosphor-converted white LEDs and high-precision optical optical thermometry.
-
Keywords:
- Dy3+ /
- phosphor /
- LED /
- optical temperature sensing
-
[1] Hu J, Cui R R, Zhang J, Peng L H, Shi Y Z, Guo X 2024 J. Rare Earths. 42 1855
[2] Yu Z Q, Li X D, Wang J, Zhang S 2023 Mater. Today Chem. 33 101739
[3] Gu J Q, Xie F Y, Wang S Q, Xu D K, Zhang H, Xu H L, Zhong S L 2024 Ceram. Int. 50 14127
[4] Xie J H 2022 Ph. D. Thesis (Jilin: Changchun University Of Science And Technology) (in Chinese) [谢吉焕 2022 博士学位论文 (吉林:长春理工大学)]
[5] Gao S F, Pan Y Y, Jia K Y, Han Pan, Xiong Y, Cheng S B 2024 ACS Appl. Nano Mater. 7 20094
[6] Zhao R L, Guo X, Zhang J, Zhang C, Deng C Y, Cui R R 2023 Ceram. Int. 49 25795
[7] Yu X F 2022 Ph. D. Thesis (Jilin: Changchun University Of Science And Technology) (in Chinese) [于小芳 2022 博士学位论文 (吉林:长春理工大学)]
[8] Shi L Y, Zhao D, Zhang R J, Zhu S Y, Yu M H 2022 Dalton Trans. 51 3686
[9] Zhao F Y 2024 Ph. D. Thesis (Beijing: University of Science and Technology Beijing) (in Chinese) [赵芳仪2024 博士学位论文 (北京:北京科技大学)]
[10] Wani M A, Magray T F, Belekar R M 2023 Inorg. Chem. Commun. 158 111703
[11] Gao M, Li K, Yan Y H, Xin S Y, Dai H, Zhu G, Wang C 2021 J. Mol. Struct. 1228 129471
[12] Chen R J, Jiang X L, Zhang T Q, Zeng F M, Yang W L, Lin H, Liu L N, Li S S, Li C, Su Z M 2023 J. Alloys Compd. 966 171558
[13] Wang Y H, Lian X Z, Xu H W, Kang X J, Lv W 2022 Chin. J. Lumin. 43 676(in Chinese) [王一航,连雪珠,徐华伟,康晓娇,吕伟 2022发光学报43 676]
[14] Song R T, Tang H, Li J P, Niu Y F, Liu Y X, He J Y, Zhu J 2024 Opt. Mater. 148 114859
[15] Liu C L, Zheng Y K, Qin Y, Liang L L, Yang S Q, Li H, Jiang H M, Zhao X Y, Liu S L, Zhang H Z, Zhu J 2024 Inorg. Chem. 63 6483
[16] Jose J R, Jose T A, Ashok A J, Joseph C, Biju P R 2024 J. Alloys Compd. 1006 176304
[17] Zhong C S, Zhang L, Xu Y H, Wu X D, Yin S W, Zhang X B, You H P 2022 Mater. Today Chem. 26 101233
[18] Xia Z G, Liu Q L 2016 Prog. Mater Sci. 84 59
[19] Zhang X, Cui R R, Zhang M, Pi Y W, Yin X X, Deng C Y 2024 J. Alloys Compd. 1002 175471
[20] Wei C, Zhang J, Sun Z, Ran J Y, Guo L, Sun J Y 2024 J. Alloys Compd. 971 172686
[21] Lu J W, Zhao J, Zhang Y C, Tu R T, Liu F N, Leng Z H 2024 Acta Phys. Sin. 73 111 (in Chinese) [禄靖雯,赵瑾,张永春,涂茹婷,刘馥妮,冷稚华 2024 物理学报 73 111]
[22] Jiang H X, Lv S C 2011 Acta Phys. Sin. 70 254 (in Chinese) [姜洪喜,吕树臣 2021 物理学报 70 254
[23] Liu Q Y, Wu M H, Chen B L, Huang X M, Liu M Y, Liu Y F, Su K, Min X, Mi R Y, Huang Z H 2023 Ceram. Int. 49 4971
[24] Xi Q, Yin T, Zhang Y, Zhao H C, Wu Z P, Zhang Q Q, Wang D W, Guan L, Wang C S, Li X 2025 J. Alloys Compd. 1018 179241
[25] Tang H, Zhang X Y, Cheng L Q, Mi X Y, Liu Q S 2022 J. Alloys Compd. 898 162758
[26] Wang R Y 2024 Ph. D. Thesis (Jilin: Changchun University Of Science And Technology) (in Chinese) [王瑞阳 2024 博士学位论文 (吉林:长春理工大学)]
[27] Zhang Y, Miao S H, Liang Y J, Liang C, Chen D X, Shan X H, Sun K N, Wang X J 2022 Light Sci. Appl. 11 136.
[28] Wang Y Q, Li Y F, Du Y L, Liu G X, Liu S D, Wang J X, Dong X T 2025 J. Mol. Struct. 1324 140971
[29] Min Z Y, Zeng Q, Chen S M, Qin Y, Yao C F 2022 J. Alloys Compd. 924 166497
[30] Long S C, Tian M F, Zhang D, Luo X X, Xu W, Tian Y, Xin S Y 2024 J. Mater. Chem. C. 12 19536
[31] Guo J, Li S C, Kong J Y, Li Y X, Zhou L, Lou L Y, Lv Q Y, Tang R, Zheng L L, Deng B, Yu R J 2022 Opt. Laser Technol. 155 108347
[32] Wang Z Y, Ma L Y, Shao Y, Luo Y Z, Liao R C, Kong X M, Yang X Y 2025 Ceram. Int. 51 19535
[33] Luo J, Zhang Z Q, Xu J H, Qin Z T, Zhao Y S, He H, Li P N, Tang J F 2023 Acta Phys. Sin. 72 315 (in Chinese) [罗杰,张子秋,徐俊豪,秦兆婷,赵元帅,何洪,李冠男,唐剑锋 2023 物理学报 72 315]
[34] Zhang Y H, Sun B, Liu J, Zhang Z Y, Liu H 2023 Dalton Trans. 52 13304
[35] Gong C Y, Zheng Q J, Wan Z H, Yang J Y 2024 MR 38 87 (in Chinese) [官春艳,郑启泾,万正环,杨锦瑜2024 材料导报 38 87]
[36] Chen J X, He D M, Wang W X, Li S L, Zou Z Q, Liu J H, Wang Y, Chen X Y, Zheng L L, Xie S A, Yu R J 2024 J. Lumin. 265 120252
[37] Li Y T, Xu S, Chen J, Wang X K, Gong S, Zhang X J, Liu H S, Chi Y D, Sun X R, Mahadevan C K 2024 Ceram. Int. 50 25548
[38] Wang J X, Li Z H, Zhao Y, Jiang X K, Zhou H W 2024 Acta Phys. Sin. 73 259 (in Chinese) [王佳旭,李忠辉,赵炎,蒋小康,周恒为 2024 物理学报 73 259]
[39] Zhou J, Wang T S, Zhang W T, Huang X, Wang X M 2022 Ceram. Int. 48 17053
[40] Zhao W, Ping Z Y, Zheng Q H, Zhou W W 2018 Acta Phys. Sin. 67 241 (in Chinese) [赵旺,平兆艳,郑庆华,周薇薇 2018 物理学报 67 241]
[41] Zhou L, Liu L, Yang R Q, Kong J Y, Li Y X, Zhao Y X, Du Y F, Li C L, Zou Z Q, Deng B, Yu R J 2023 Inorg. Chem. Commun. 148 110316
[42] Song R T, Zhang Z H, Li H, Luo Z Y, Yang J Y, Ma J, Xiang X F, Zeng Q, Zhu J 2023 Ceram. Int. 49 6965
[43] Chen S M, Zeng Q, Yao C F, Liu Y Y, Qin Y, Min Z Y 2022 J. Lumin. 244 118697.
[44] Abbas M T, Khan S A, Mao J, Khan N Z, Qiu L, Ahmed J, Wei X, Chen Y, Alshehri S M, Agathopoulos S 2022 J. Therm. Anal. Calorim. 147 11769
[45] GaoF H, Khan W U, Khan W U, Ye Z Q, Zhang Y L 2023 Ceram. Int. 49 8039
[46] Wade S A, Collins S F, Baxter G W 2003 J. Appl. Phys. 94 4743
[47] Yan Y B, Li S, Ding S S, Zhang B X, Sun H, Ju Q H, Yao L 2024 Acta Phys. Sin. 73 269 (in Chinese) [严涌飚,李霜,丁双双,张冰雪,孙浩,鞠泉浩,姚露 2024 物理学报 73 269]
[48] Liao Z C, Cao B S, Li L P, Cong Y, He Y Y, Dong B 2023 Appl. Mater. Today 31 101765
计量
- 文章访问数: 575
- PDF下载量: 0
- 被引次数: 0