搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同润湿条件下带正弦凸起粗糙表面上汽泡成核的分子动力学研究

余绵 李丙衡 孟祥文 吴连锋 马连湘 唐元政

引用本文:
Citation:

不同润湿条件下带正弦凸起粗糙表面上汽泡成核的分子动力学研究

余绵, 李丙衡, 孟祥文, 吴连锋, 马连湘, 唐元政

Molecular dynamics study on bubble nucleation over surfaces with convex roughness under different wetting conditions

YU Mian, LI Bingheng, MENG Xiangwen, WU Lianfeng, MA Lianxiang, TANG Yuanzheng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 汽泡成核在沸腾换热、微流控制设备中的气液分离以及生物医学中的气体传输等相变和流动过程中扮演关键角色,易受表面润湿性能和粗糙结构的影响。鉴于实验研究的局限,本文采用分子动力学方法系统研究了具有不同润湿性能和不同数量纳米凸起的恒热流过热表面对水中汽泡成核的影响规律和微观机制。结果表明,在相同表面润湿性能下,随纳米凸起数量增加,表面粗糙度增加,汽泡成核时间点提前;对具有相同粗糙度的表面,随表面亲水性增强,汽泡成核时间点提前;在本文研究范围内,具有最大粗糙度的亲水表面上水的汽泡成核最早。近壁面处水的密度和温度随时间的变化以及密度和温度的空间分布的分析表明:由于热量积聚,纳米凸起与底部平面连接拐角处最易成为汽化核心。Kapitza热阻的计算结果表明:亲水性越强的表面具有越低的固–液界面热阻,越有利于汽泡成核。本文为理解汽泡成核的微观机制及优化传热、传质和流体控制系统的设计提供了理论依据。
    Bubble nucleation plays a pivotal role in microscale heat conduction, boiling heat transfer, and liquid-vapor phase change processes, as it not only governs heat transfer efficiency but also strongly regulates bubble dynamics. The nucleation processes are highly sensitive to the surface morphology and wettability of solid substrates. However, due to the inherent limitations of conventional experiments in terms of spatial resolution and observation times, revealing the microscopic mechanisms of bubble nucleation at the nanoscale remains a significant challenge—particularly under conditions involving complex surface structures and diverse wettability states. In this study, molecular dynamics simulations were employed to systematically investigate the mechanisms by which surface roughness and wettability influence bubble nucleation behavior on nanostructured surfaces at the atomic scale. Five copper substrates featuring sinusoidal protrusions were designed to represent different degrees of surface roughness. The sinusoidal profile, characterized by mathematical continuity and smoothness, not only facilitates the observation of bubble coalescence and contact angle evolution but also ensures comparability among models by maintaining identical protrusion height and overall width, thereby keeping the protrusion volume constant. This design allows direct comparison of bubble growth rates and other physical quantities across different models. In addition, three distinct wettability conditions, namely hydrophobic, neutral, and hydrophilic, were achieved by modifying the interaction potential between oxygen and copper atoms. During the simulations, a constant heat flux was applied to the bottom copper substrate to trigger spontaneous bubble nucleation, local low-density regions were identified using density distribution analysis to track bubble nucleation sites; and a piston-like pressure control mechanism was introduced via the top copper plate, and the displacement of this plate over time was used to quantify bubble growth rates under varying roughness and wettability. Additionally, the Kapitza resistance between solid and liquid phases was calculated to evaluate interfacial heat transfer efficiency. The results demonstrate that increasing surface roughness significantly promotes the formation of local low-density cavities, thereby accelerating the bubble nucleation and subsequent growth. As the surface wettability transitions from hydrophobic to hydrophilic, the solid-liquid interfacial thermal resistance decreases, leading to earlier bubble nucleation. Moreover, under hydrophilic conditions, the contact angle of the bubbles increases significantly, indicating enhanced detachment and growth behavior. Overall, the findings of this work advance the fundamental understanding of the microscopic mechanisms of bubble nucleation and provide theoretical guidance and technical references for the design of high-efficiency heat transfer structures and tunable fluid-solid interfaces at the nanoscale.
  • [1]

    Shahmardi A, Tammisolae O, Chinappi M, Brandt L 2021 Int. J. Therm. Sci 167 106980.

    [2]

    Yuan H S, Tan S C, Du W A, Ding S H, Guo C 2018 Int. J. Heat Mass Transfer 122 1198

    [3]

    Hu Y, Gao H T, Yan Y Y 2025 J. Ind. Eng. Chem 143 123

    [4]

    Moiz M, Vadlamudi S R G, Srivastava A 2024 Int. J. Heat Mass Transfer 233 126006

    [5]

    Arunkumar H.S, Hitesh N.M, Madhwesh N., Hegde A K, Karanth K.V 2023 Sol. Energy 266 112161

    [6]

    Zhang Y L, Lu S L, Li D L, Duan H Y, Duan C W, Zhang J H, Liu S T 2023 Chin. J. Chem. Eng 62 168

    [7]

    Zhang Y L, Duan H Y, Chen E J, Li M, Liu S T Langmuir 39 1629

    [8]

    Javier R R, Sevilla A, Carlos M B, Gordillo J M 2015 Annu. Rev. Fluid Mech 47 405

    [9]

    Hsiao C. T, Choi J. K., Singh S., Chahine G. L., Hay T. A., Ilinskii Yu. A., Zabolotskaya E. A., Hamilton M. F., Sankin G., Yuan F., Zhong P. J 2013 Fluid Mech 716 137

    [10]

    Yuan H B, Wang Q, Yin X S, Li D, Yue X, Yang B J 2021 Nanosci. Nanotechnol 21 1315

    [11]

    Alder J B, Wainwright E T 1959 J. Chem. Phys 31 459

    [12]

    Frenkel D, Smit B, Ratner M A 2002 Phys. Today 50 66

    [13]

    Wen R F, Li Q, Wang W, Latour B, Calvin H. L, Li C, Lee Y C, Yang R G 2017 Nano Energy 38 59

    [14]

    Miao S S, Xia G D 2024 J. Mol. Liq 400 124457

    [15]

    Liu H Q, Qin X Y, Ahmad S, Tong Q, Zhao J Y 2019 Int. J. Heat Mass Transfer 145 118799

    [16]

    Zhang S W, Hao F, Chen H M, Yuan W, Tang Y, Chen X 2017 Appl. Therm. Eng 113 208

    [17]

    Wang W R, Huang S H, Luo X S 2016 Int. J. Heat Mass Transfer 100 276

    [18]

    Zhang L Y, Xu J L, Liu G L, Lei J P 2020 Int. J. Therm. Sci 152 106325

    [19]

    Yang H C, Xu M D, Xing Y W, Gui X H, Cao Y J 2025 Acta Phys. Sin 74 024702 (in Chinese) [杨海昌, 徐梦迪, 邢耀文, 桂夏辉, 曹亦俊 2025 物理学报 74 024702]

    [20]

    Bai P 2022 Molecular dynamics study of the effects of roughness and wettability on boiling Ph. D. Dissertation (Beijing: North China Electric Power University) (in Chinese) [白璞 2022 博士学位论文(北京:华北电力大学)]

    [21]

    Yang H C, Jiang H Y, Cheng Y L, Xing Y W, Cao Y J, Gui X H 2024 J. Mol. Liq 411 125758

    [22]

    Shahid M, Young K H 2022 J. Korean Phys. Soc 82 375

    [23]

    Zhou W J, Zhang Y H, Wei J J 2022 Langmuir 38 1223

    [24]

    Liu H Q, Deng W, Ding P, Zhao J Y 2021 Nucl. Eng. Des 382 111400

    [25]

    Zhang X S, Fan Z Z, Tong Q L, Fu Y F 2024 Acta Phys. Sin 73 204701 (in Chinese) [张雪松, 范振忠, 仝其雷, 付沅峰 2024 物理学报73 204701]

    [26]

    Vladislav A. Y, Guillaume A, Molinari J F 2014 Tribol. Lett 56 171

    [27]

    Deng W, Ma S H, Li W M, Liu H Q, Zhao J Y 2022 Int. J. Heat Mass Transfer 191 122856

    [28]

    Berendsen H. J.C., Grigera J.R., Straatsma T.P. 1987 J. Phys. Chem 91 6269

    [29]

    Peter G. K, Igor M. S. 1994 Science 265 1219

    [30]

    Ryckaert J P, Ciccotti G, Berendsen H J.C 1977 J. Comput. Phys 23 327

    [31]

    Hockney R.W, Eastwood J.W 2021 Computer Simulation Using Particles 1st (Boca Raton: CRC Press) pp267-269

    [32]

    Guo C, Ji C, Kong Y L, Liu Z G, Guo L Yang Y Y 2023 Materials 16 1984

    [33]

    Schneider T., Stoll E 1978 Phys. Rev. B 17 1302

    [34]

    Steve P 1995 J. Comput. Phys 117 1

    [35]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng 18 015012

    [36]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33

    [37]

    Tang Y Z, Wu L F, Ma L X, Feng S Y, He Y 2022 Int. J. Therm. Sci 171 107212

    [38]

    Chen Y J, Yu B, Zou Y, Chen B N, Tao W Q 2020 Int. J. Heat Mass Transfer 158 119850

    [39]

    Chen Y L, Guo L, Sun W C, Cai N N, Yan Y Y 2023 Int. J. Multiphase Flow 169 104613

    [40]

    Zhang L Y, Xu J L, Lei J P 2018 Acta Phys. Sin 67 234702 (in Chinese) [张龙艳, 徐进良, 雷俊鹏 2018 物理学报 67 234702]

    [41]

    Cao Q, Li Z R, Cui Z 2023 Langmuir 39 12754

    [42]

    Fan X Y, Zhang Z W, Wang Y H, Liu Y S 2022 Chemical Engineering & Machinery 49 920 (in Chinese) [樊翔宇, 张周卫, 汪雅红, 刘要森 2022 化工机械 49 920]

    [43]

    Ge S, Chen M 2013 Acta Phys. Sin 62 110204 (in Chinese) [葛宋, 陈民 2013 物理学报 62 110204]

    [44]

    Liu Z Y, Liu Z Y, Liu R K 2023 Int. J. Therm. Sci 192 108424

  • [1] 杨欢, 郑雨军. 分子动力学中的几何相位. 物理学报, doi: 10.7498/aps.74.20250388
    [2] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究. 物理学报, doi: 10.7498/aps.73.20232026
    [3] 谷靖萱, 郑庭, 郭明帅, 夏冬生, 张会臣. 计入粗糙峰的微纳结构表面水润滑流体动力学仿真. 物理学报, doi: 10.7498/aps.73.20240333
    [4] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.72.20221815
    [5] 曾启昱, 陈博, 康冬冬, 戴佳钰. 大规模、量子精度的分子动力学模拟: 以极端条件液态铁为例. 物理学报, doi: 10.7498/aps.72.20231258
    [6] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20200323
    [7] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根. 粗糙势中耦合布朗粒子的定向输运性能. 物理学报, doi: 10.7498/aps.68.20191203
    [8] 李瑞涛, 唐刚, 夏辉, 寻之朋, 李嘉翔, 朱磊. 二维随机蜂巢网格熔断动力学过程和熔断面标度性质的数值模拟. 物理学报, doi: 10.7498/aps.68.20181774
    [9] 梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿. 纳米通道粗糙内壁对流体流动行为的影响. 物理学报, doi: 10.7498/aps.68.20181956
    [10] 张永建, 叶芳霞, 戴君, 何斌锋, 臧渡洋. 纳米粗糙度对胶体液滴蒸发图案的影响机制. 物理学报, doi: 10.7498/aps.66.066101
    [11] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, doi: 10.7498/aps.64.024101
    [12] 邱超, 张会臣. 正则系综条件下空化空泡形成的分子动力学模拟. 物理学报, doi: 10.7498/aps.64.033401
    [13] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.086102
    [14] 张程宾, 许兆林, 陈永平. 粗糙纳通道内流体流动与传热的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.63.214706
    [15] 邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东. Pb液滴在Ni基底润湿铺展行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.62.120203
    [16] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, doi: 10.7498/aps.58.7050
    [17] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, doi: 10.7498/aps.56.5389
    [18] 郝鹏飞, 姚朝晖, 何 枫. 粗糙微管道内液体流动特性的实验研究. 物理学报, doi: 10.7498/aps.56.4728
    [19] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.54.3278
    [20] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, doi: 10.7498/aps.53.2497
计量
  • 文章访问数:  175
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-04

/

返回文章
返回