搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维随机蜂巢网格熔断动力学过程和熔断面标度性质的数值模拟

李瑞涛 唐刚 夏辉 寻之朋 李嘉翔 朱磊

引用本文:
Citation:

二维随机蜂巢网格熔断动力学过程和熔断面标度性质的数值模拟

李瑞涛, 唐刚, 夏辉, 寻之朋, 李嘉翔, 朱磊

Numerical simulation of melting dynamic process and surface scale properties of two-dimensional honeycomb lattice

Li Rui-Tao, Tang Gang, Xia Hui, Xun Zhi-Peng, Li Jia-Xiang, Zhu Lei
PDF
HTML
导出引用
  • 石墨烯等材料具有典型的二维蜂巢结构, 而随机电阻丝模型则是研究非均匀材料断裂十分有效的统计物理学模型. 本文尝试对二维蜂巢结构随机电阻丝网络熔断的动力学过程及熔断面性质进行数值模拟分析, 以此来研究二维非均质蜂窝材料熔断的动力学性质和熔断面的动力学标度性质. 模拟研究表明, 二维随机蜂窝网格的熔断动力学过程和熔断面具有明显的标度性质, 得到的熔断面整体和局域粗糙度指数分别为 $\alpha = 0.911 \pm 0.005$${\alpha _{{\rm{loc}}}} = 0.808 \pm 0.003$, 这两者之间的明显差异表明熔断面具有奇异标度性. 通过对熔断面极值高度的分析发现, 熔断面高度的极值统计分布能很好地满足Asym2sig型分布, 而不是最常见的三种极值统计分布. 本文的研究表明, 随机电阻丝模型在模拟非均匀材料的电流熔断过程和熔断表面标度性的分析中同样适用和有效.
    Graphene and other materials have a typical two-dimensional (2D) honeycomb structure. The random fuse model is a statistical physics model that is very effective in studying the fracture dynamics of heterogeneous materials. In order to study the current fusing process and the properties of the fractured surface of 2D honeycomb structure materials such as graphene, in this paper we attempt to numerically simulate and analyze the fusing process and melting profile properties of the 2D honeycomb structure random fuse network. The results indicate that the surface width exhibits a good scaling behavior and has a linear relationship with the system size, and that the out-of-plane roughness exponent displays a global value of $\alpha = 0.911 \pm 0.005$ and a local value of ${\alpha _{{\rm{loc}}}} = 0.808 \pm 0.003$, approximate to those of the materials studied. The global and local roughness and their difference indicate that the fusing process and the fracture profile exhibit significant scale properties and have a strange scale. On the other hand, by analyzing the extreme values of the fused surface with different system sizes, the extreme heights can be collapsed very well, after a lot of trials and analysis, it is found that the extreme statistical distribution of the height of the fused surface can well satisfy the Asym2sig type distribution. The extreme height distributions of fracture surfaces can be fitted by Asym2Sig distribution, rather than the three kinds of usual extreme statistical distributions, i.e. Weibull, Gumbel, and Frechet distributions. The relative maximal and minimum height distribution of the fused surface at the same substrate size have a good symmetry.   In the simulation calculation process of this paper, the coefficient matrix is constructed by using the node analysis method, and the Cholesky decomposition is performed on the coefficient matrix, and then the Sherman-Morrison-Woodbury algorithm is used to quickly invert the coefficient matrix, which greatly optimizes the calculation process and calculation. The efficiency makes the numerical simulation calculation and analysis performed smoothly.  The research in this paper indicates that the random fuse model is a very effective theoretical model in the numerical analysis of the scaling properties of rough fracture surfaces, and it is also applicable to the current fusing process of the inhomogeneous material and the scaling surface analysis of the fusing surface. In this paper, it is found that materials with anisotropic structure can also find their fracture mode by energization, and the properties of fracture surface can provide reference for the study of mechanical properties of honeycomb structural materials. It is a very effective statistical physical model, and this will expand the field of applications of random fuse models.
      通信作者: 唐刚, gangtang@cumt.edu.cn
    • 基金项目: 中央高校基本科研业务费(批准号: 2015XKMS078)资助的课题.
      Corresponding author: Tang Gang, gangtang@cumt.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2015XKMS078).
    [1]

    Abergel D S L, Apalkov V, Berashevich J 2010 Adv. Phys. 59 261Google Scholar

    [2]

    Shin Y J, Gopinadhan K, Narayanapillai K 2013 Appl. Phys. Lett. 102 666

    [3]

    Lu Y H, Shi L, Zhang C, Feng Y P 2009 Phys. Rev. B 80 233410Google Scholar

    [4]

    Moura M J B, Marder M 2013 Phys. Rev. E 88 032405Google Scholar

    [5]

    Ghorbanfekr-Kalashami H, Neek-Amal M, Peeters F M 2016 Phys. Rev. B 93 174112Google Scholar

    [6]

    Alava M J, Nukala P K V V, Zapperi S 2006 Adv. Phys. 55 351

    [7]

    Garcimart'ın A, Guarino A, Bellon L, Ciliberto S 1997 Phys. Rev. Lett. 79 3202Google Scholar

    [8]

    Maes C, van Moffaert A, Frederix H, Strauven H 1998 Phys. Rev. B 57 4987

    [9]

    Petri A, Paparo G, Vespignani A, Alippi A, Costantini M 1994 Phys. Rev. Lett. 73 3423Google Scholar

    [10]

    Salminen L I, Tolvanen A I, Alava M J 2002 Phys. Rev. Lett. 89 185503Google Scholar

    [11]

    Arcangelis L, Redner S, Herrmann H J 1985 J. Phys. Lett. 46 585Google Scholar

    [12]

    Schramm O 2000 Israel J. Math. 118 221Google Scholar

    [13]

    Claudio M, Ashivni S, Nukala P K V V, Alava M J, Sethna J P, Zapperi S 2012 Phys. Rev. Lett. 108 065504Google Scholar

    [14]

    Duxbury P M, Beale P D, Leath P L 1986 Phys. Rev. Lett. 59 155

    [15]

    Nukala P K V V, Srdan S, Zapperi S 2004 J. Stat. Mech. 8 P08001

    [16]

    Toussaint R, Hansen A 2006 Phys. Rev. E 73 046103Google Scholar

    [17]

    Jan Øystein H B, Hansen A 2008 Phys. Rev. Lett. 100 045501Google Scholar

    [18]

    Davis T A, Hager W W 1999 Siam J. Matrix Anal. A 22 997

    [19]

    Family F, Vicsek T 1985 J. Phys. A 18 L75Google Scholar

    [20]

    Xun Z P, Tang G, Han K, Xia H, Hao D P, Li Y 2012 Phys. Rev. E 85 041126Google Scholar

    [21]

    寻之朋 2017 离散模型表面界面粗化的动力学标度性质(徐州: 中国矿业大学出版社) 第88页

    Xun Z P 2017 The Dynamic Scale Properties of the Surface Roughness of the Discrete Growth Model (Xuzhou: China Mining University Press) p88

    [22]

    Raychaudhuri S, Cranston M, Przybyla C, Shapir Y 2001 Phys. Rev. Lett. 87 136101Google Scholar

    [23]

    Foltin G, Oerding K, Racz Z, Workman R L, Zia R K P 1994 Phys. Rev. E 50 639Google Scholar

    [24]

    Majumdar S N, Comtet A 2004 Phys. Rev. Lett. 92 225501Google Scholar

    [25]

    Derrida B, Lebowitz J L 1998 Phys. Rev. Lett. 80 209Google Scholar

    [26]

    Majumdar S N, Comtet A 2005 Stat. Phys. 119 777Google Scholar

    [27]

    Fisher R A, Tippett L H C 1928 Proc. Cambridge Philos. Soc. 24 180Google Scholar

    [28]

    Bramwell S T, Christensen K, Fortin J, Holdsworth P C W, Jensen H J, Lise S, Lopez J M, Nicodemi M, Pinton J F, Sellitto M 2000 Phys. Rev. Lett. 84 3744Google Scholar

    [29]

    Antal T, Droz M, Gyorgyi G, Racz Z 2001 Phys. Rev. Lett. 87 240601Google Scholar

    [30]

    Lee D S 2005 Phys. Rev. Lett. 95 150601Google Scholar

    [31]

    Lee S B, Jeong H C, Kim J M 2008 J. Stat. Mech. 9 P12013

    [32]

    Wen R J, Tang G, Han K, Xia H, Hao D P, Xun Z P, Chen Y L 2011 Chin. J. Comput. Phys. 28 933

    [33]

    Cui L J, Zhang Y, Zhang M Y, Li W, Zhao X S, Li S G, Wang Y F 2012 J. Environ. Mont. 14 3037Google Scholar

    [34]

    Brar J 2011 M.S. Thesis (Ottawa: University of Ottawa) pp6-9

    [35]

    杨毅, 唐刚, 宋丽建, 寻之朋, 夏辉, 郝大鹏 2014 物理学报 63 150501Google Scholar

    Yang Y, Tang G, Song L J, Xun Z P, Xia H, Hao D P 2014 Acta Phys. Sin. 63 150501Google Scholar

    [36]

    杨毅, 唐刚, 张哲, 寻之朋, 宋丽建, 韩奎 2015 物理学报 64 130501Google Scholar

    Yang Y, Tang G, Zhang Z, Xun Z P, Song L J, Han K 2015 Acta Phys. Sin. 64 130501Google Scholar

    [37]

    王晓芳, 杨小玲, 刘洋 2018 化学工程师 274 7

    Wang X F, Yang X L, Liu Y 2018 Chemical Engineer. Sum. 274 7

    [38]

    吴海华, 肖林楠, 王俊, 王亚迪 2018 激光与光电子学进展 55 011417

    Wu H H, Xiao L N, Wang J, Wang Y D 2018 Laser Opt. Prog. 55 011417

    [39]

    McGregor D J , Sameh T, William P K 2019 Addit. Manuf. 25 10Google Scholar

    [40]

    Gibson L J, Ashby M F 1997 Cellular Solids: Structure and Properties (2nd Ed.)(Cambridge: Cambridge University Press) (Cambridge: Cambridge University Press) pp13-19

    [41]

    Soriano J, Ramasco J J, Rodriguez M A, Hernandez-Machado A 2002 Phys. Rev. Lett. 89 026102Google Scholar

  • 图 1  石墨烯蜂巢结构随机电阻丝网络通电熔断示意图

    Fig. 1.  Schematic diagram of random fuse model electric fuse in graphene honeycomb structure.

    图 2  2 × 2的正方格子电流流向示意图

    Fig. 2.  2 × 2 square lattice current flow diagram.

    图 3  整体表面宽度$W$随系统尺寸$L$的对数-对数曲线

    Fig. 3.  The log-logarithmic curve of the global surface width W with the system size L.

    图 4  局域表面宽度$w$随局域尺寸$l$的对数-对数曲线

    Fig. 4.  The Log-logarithmic curve of local surface width w with local size l.

    图 5  不同系统尺寸下石墨烯蜂巢结构随机电阻丝网络熔断面相对极大高度分布

    Fig. 5.  Relative maximum height distribution of the fracture surface of random fuse model with graphene honeycomb structure under different system sizes.

    图 6  不同系统尺寸下石墨烯蜂巢结构随机电阻丝网络熔断面相对极小高度分布

    Fig. 6.  Relative minimum height distribution of the fracture surface of random fuse model with graphene honeycomb structure under different system sizes.

    图 7  不同系统尺寸下石墨烯蜂巢结构随机电阻丝网络熔断面的相对极大高度的半对数分布

    Fig. 7.  Semi-logarithmic distribution of the relative maximum height of the fracture surface of random fuse model with graphene honeycomb structure under different system sizes.

    图 8  不同系统尺寸下石墨烯蜂巢结构随机电阻丝网络熔断面的相对极小高度的半对数分布

    Fig. 8.  Semi-logarithmic distribution of the relative minimum height of the fracture surface of random fuse model with graphene honeycomb structure under different system sizes.

    图 9  系统尺寸L = 384的熔断面的相对极大(小)高度分布

    Fig. 9.  Relatively maximum (minimum) height distribution of fracture surface with system size L = 384.

    图 10  系统尺寸L = 512的熔断面的相对极大(小)高度分布

    Fig. 10.  Relatively maximum (minimum) height distribution of fracture surface with system size L = 512.

    表 1  二维菱形、三角形及石墨烯蜂巢结构电阻丝网络熔断面整体与局域的粗糙度指数

    Table 1.  Roughness index of the global and local of the burnout surface of two-dimensional diamond, triangle and graphene honeycomb structures.

    模型$\alpha $${\alpha _{{\rm{loc}}}}$
    菱形0.752 ± 0.0080.758 ± 0.012
    三角形0.772 ± 0.0130.776 ± 0.003
    石墨烯蜂巢结构0.911 ± 0.0050.808 ± 0.003
    下载: 导出CSV

    表 2  系统尺寸为L = 384, 512, 768时Asym2sig函数拟合的参数

    Table 2.  Parameters of Asym2sig function fitting when the system size is L = 384, 512, 768.

    384 max&min512 max&min768 max&min
    y0–0.001 ± 0.012–0.002 ± 0.011–0.001 ± 0.010
    –0.004 ± 0.008–0.004 ± 0.007–0.008 ± 0.007
    xc–0.57 ± 0.02–0.58 ± 0.02–0.59 ± 0.02
    –0.70 ± 0.02–0.68 ± 0.02–0.72 ± 0.02
    A1.18 ± 0.121.15 ± 0.081.28 ± 0.11
    1.38 ± 0.131.38 ± 0.111.49 ± 0.15
    ${\omega _1}$0.85 ± 0.080.90 ± 0.060.80 ± 0.07
    0.65 ± 0.070.69 ± 0.060.58 ± 0.08
    ${\omega _2}$0.13 ± 0.020.11 ± 0.010.11 ± 0.01
    0.11 ± 0.010.10 ± 0.010.12 ± 0.01
    ${\omega _3}$0.25 ± 0.030.27 ± 0.030.32 ± 0.03
    0.28 ± 0.020.33 ± 0.020.30 ± 0.02
    下载: 导出CSV
  • [1]

    Abergel D S L, Apalkov V, Berashevich J 2010 Adv. Phys. 59 261Google Scholar

    [2]

    Shin Y J, Gopinadhan K, Narayanapillai K 2013 Appl. Phys. Lett. 102 666

    [3]

    Lu Y H, Shi L, Zhang C, Feng Y P 2009 Phys. Rev. B 80 233410Google Scholar

    [4]

    Moura M J B, Marder M 2013 Phys. Rev. E 88 032405Google Scholar

    [5]

    Ghorbanfekr-Kalashami H, Neek-Amal M, Peeters F M 2016 Phys. Rev. B 93 174112Google Scholar

    [6]

    Alava M J, Nukala P K V V, Zapperi S 2006 Adv. Phys. 55 351

    [7]

    Garcimart'ın A, Guarino A, Bellon L, Ciliberto S 1997 Phys. Rev. Lett. 79 3202Google Scholar

    [8]

    Maes C, van Moffaert A, Frederix H, Strauven H 1998 Phys. Rev. B 57 4987

    [9]

    Petri A, Paparo G, Vespignani A, Alippi A, Costantini M 1994 Phys. Rev. Lett. 73 3423Google Scholar

    [10]

    Salminen L I, Tolvanen A I, Alava M J 2002 Phys. Rev. Lett. 89 185503Google Scholar

    [11]

    Arcangelis L, Redner S, Herrmann H J 1985 J. Phys. Lett. 46 585Google Scholar

    [12]

    Schramm O 2000 Israel J. Math. 118 221Google Scholar

    [13]

    Claudio M, Ashivni S, Nukala P K V V, Alava M J, Sethna J P, Zapperi S 2012 Phys. Rev. Lett. 108 065504Google Scholar

    [14]

    Duxbury P M, Beale P D, Leath P L 1986 Phys. Rev. Lett. 59 155

    [15]

    Nukala P K V V, Srdan S, Zapperi S 2004 J. Stat. Mech. 8 P08001

    [16]

    Toussaint R, Hansen A 2006 Phys. Rev. E 73 046103Google Scholar

    [17]

    Jan Øystein H B, Hansen A 2008 Phys. Rev. Lett. 100 045501Google Scholar

    [18]

    Davis T A, Hager W W 1999 Siam J. Matrix Anal. A 22 997

    [19]

    Family F, Vicsek T 1985 J. Phys. A 18 L75Google Scholar

    [20]

    Xun Z P, Tang G, Han K, Xia H, Hao D P, Li Y 2012 Phys. Rev. E 85 041126Google Scholar

    [21]

    寻之朋 2017 离散模型表面界面粗化的动力学标度性质(徐州: 中国矿业大学出版社) 第88页

    Xun Z P 2017 The Dynamic Scale Properties of the Surface Roughness of the Discrete Growth Model (Xuzhou: China Mining University Press) p88

    [22]

    Raychaudhuri S, Cranston M, Przybyla C, Shapir Y 2001 Phys. Rev. Lett. 87 136101Google Scholar

    [23]

    Foltin G, Oerding K, Racz Z, Workman R L, Zia R K P 1994 Phys. Rev. E 50 639Google Scholar

    [24]

    Majumdar S N, Comtet A 2004 Phys. Rev. Lett. 92 225501Google Scholar

    [25]

    Derrida B, Lebowitz J L 1998 Phys. Rev. Lett. 80 209Google Scholar

    [26]

    Majumdar S N, Comtet A 2005 Stat. Phys. 119 777Google Scholar

    [27]

    Fisher R A, Tippett L H C 1928 Proc. Cambridge Philos. Soc. 24 180Google Scholar

    [28]

    Bramwell S T, Christensen K, Fortin J, Holdsworth P C W, Jensen H J, Lise S, Lopez J M, Nicodemi M, Pinton J F, Sellitto M 2000 Phys. Rev. Lett. 84 3744Google Scholar

    [29]

    Antal T, Droz M, Gyorgyi G, Racz Z 2001 Phys. Rev. Lett. 87 240601Google Scholar

    [30]

    Lee D S 2005 Phys. Rev. Lett. 95 150601Google Scholar

    [31]

    Lee S B, Jeong H C, Kim J M 2008 J. Stat. Mech. 9 P12013

    [32]

    Wen R J, Tang G, Han K, Xia H, Hao D P, Xun Z P, Chen Y L 2011 Chin. J. Comput. Phys. 28 933

    [33]

    Cui L J, Zhang Y, Zhang M Y, Li W, Zhao X S, Li S G, Wang Y F 2012 J. Environ. Mont. 14 3037Google Scholar

    [34]

    Brar J 2011 M.S. Thesis (Ottawa: University of Ottawa) pp6-9

    [35]

    杨毅, 唐刚, 宋丽建, 寻之朋, 夏辉, 郝大鹏 2014 物理学报 63 150501Google Scholar

    Yang Y, Tang G, Song L J, Xun Z P, Xia H, Hao D P 2014 Acta Phys. Sin. 63 150501Google Scholar

    [36]

    杨毅, 唐刚, 张哲, 寻之朋, 宋丽建, 韩奎 2015 物理学报 64 130501Google Scholar

    Yang Y, Tang G, Zhang Z, Xun Z P, Song L J, Han K 2015 Acta Phys. Sin. 64 130501Google Scholar

    [37]

    王晓芳, 杨小玲, 刘洋 2018 化学工程师 274 7

    Wang X F, Yang X L, Liu Y 2018 Chemical Engineer. Sum. 274 7

    [38]

    吴海华, 肖林楠, 王俊, 王亚迪 2018 激光与光电子学进展 55 011417

    Wu H H, Xiao L N, Wang J, Wang Y D 2018 Laser Opt. Prog. 55 011417

    [39]

    McGregor D J , Sameh T, William P K 2019 Addit. Manuf. 25 10Google Scholar

    [40]

    Gibson L J, Ashby M F 1997 Cellular Solids: Structure and Properties (2nd Ed.)(Cambridge: Cambridge University Press) (Cambridge: Cambridge University Press) pp13-19

    [41]

    Soriano J, Ramasco J J, Rodriguez M A, Hernandez-Machado A 2002 Phys. Rev. Lett. 89 026102Google Scholar

  • [1] 谷靖萱, 郑庭, 郭明帅, 夏冬生, 张会臣. 计入粗糙峰的微纳结构表面水润滑流体动力学仿真. 物理学报, 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [2] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根. 粗糙势中耦合布朗粒子的定向输运性能. 物理学报, 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [3] 梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿. 纳米通道粗糙内壁对流体流动行为的影响. 物理学报, 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [4] 王建国, 杨松林, 叶永红. 样品表面银膜的粗糙度对钛酸钡微球成像性能的影响. 物理学报, 2018, 67(21): 214209. doi: 10.7498/aps.67.20180823
    [5] 李夏至, 邹德滨, 周泓宇, 张世杰, 赵娜, 余德尧, 卓红斌. 等离子体光栅靶的表面粗糙度对高次谐波产生的影响. 物理学报, 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [6] 宋延松, 杨建峰, 李福, 马小龙, 王红. 基于杂散光抑制要求的光学表面粗糙度控制方法研究. 物理学报, 2017, 66(19): 194201. doi: 10.7498/aps.66.194201
    [7] 张永建, 叶芳霞, 戴君, 何斌锋, 臧渡洋. 纳米粗糙度对胶体液滴蒸发图案的影响机制. 物理学报, 2017, 66(6): 066101. doi: 10.7498/aps.66.066101
    [8] 宋永锋, 李雄兵, 史亦韦, 倪培君. 表面粗糙度对固体内部超声背散射的影响. 物理学报, 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [9] 陈苏婷, 胡海锋, 张闯. 基于激光散斑成像的零件表面粗糙度建模. 物理学报, 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [10] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [11] 张程宾, 许兆林, 陈永平. 粗糙纳通道内流体流动与传热的分子动力学模拟研究. 物理学报, 2014, 63(21): 214706. doi: 10.7498/aps.63.214706
    [12] 曹洪, 黄勇, 陈素芬, 张占文, 韦建军. 脉冲敲击技术对PI微球表面粗糙度的影响. 物理学报, 2013, 62(19): 196801. doi: 10.7498/aps.62.196801
    [13] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [14] 张宝玲, 何智兵, 吴卫东, 刘兴华, 杨向东. 占空比对微球a-C:H薄膜制备的影响. 物理学报, 2009, 58(9): 6436-6440. doi: 10.7498/aps.58.6436
    [15] 薛伟, 解国新, 王权, 张淼, 郑蓓蓉. 几种微构件材料的表面能及纳观黏附行为研究. 物理学报, 2009, 58(4): 2518-2522. doi: 10.7498/aps.58.2518
    [16] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [17] 郝鹏飞, 姚朝晖, 何 枫. 粗糙微管道内液体流动特性的实验研究. 物理学报, 2007, 56(8): 4728-4732. doi: 10.7498/aps.56.4728
    [18] 张翠玲, 郑瑞伦, 滕 蛟. NiFeNb种子层对坡莫合金磁滞回线的影响. 物理学报, 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [19] 孙霞, 吴自勤. 规则表面形貌的分形和多重分形描述. 物理学报, 2001, 50(11): 2126-2131. doi: 10.7498/aps.50.2126
    [20] 程路, 萧季驹. 非相干光源用于“核-环比”法测量表面粗糙度. 物理学报, 1990, 39(1): 10-17. doi: 10.7498/aps.39.10
计量
  • 文章访问数:  7334
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-27
  • 修回日期:  2018-11-24
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回