搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

样品表面银膜的粗糙度对钛酸钡微球成像性能的影响

王建国 杨松林 叶永红

引用本文:
Citation:

样品表面银膜的粗糙度对钛酸钡微球成像性能的影响

王建国, 杨松林, 叶永红

Effect of silver film roughness on imaging property of BaTiO3 microsphere

Wang Jian-Guo, Yang Song-Lin, Ye Yong-Hong
PDF
导出引用
  • 研究了样品表面镀有不同表面粗糙度的银膜对钛酸钡(BaTiO3 glass,BTG)微球成像效果的影响,发现当银膜表面的粗糙度(RMS)从3.23 nm增大到6.80 nm时,用直径为15 μm的BTG微球观察直径为250和580 nm的微球阵列,样品的成像范围增大.另外,BTG微球还可以清晰分辨原本不可分辨的直径为200 nm的微球阵列.结果表明,粗糙银膜引起的散射作用和表面等离激元波的局域场增强效应,使得更多物体的高频信息耦合进微球,提高了微球成像的分辨率和成像范围.
    Due to the Abbe diffraction limit, the resolution of a traditional optical microscopy is limited to about half of the illumination wavelength. Recent studies show that super-resolution imaging through dielectric microsphere has emerged as a simple imaging technique to overcome the diffraction limit under the illumination of white light. However, for imaging through microsphere, sometimes it is needed to enhance the reflection of a sample by depositing a metallic thin film on the top of the sample. Metallic thin films with different surface roughness have different optical properties. However, the effect caused by the surface roughness of a metallic film on microsphere imaging is rarely studied. In this paper, we study the effects of silver films with different surface roughness deposited on the surfaces of samples on the imaging properties of BaTiO3 (BTG) microspheres. Silver thin films are deposited respectively at evaporation rates of 1.5-3 Å/s and 5-10 Å/s, and the surface roughness values (root mean square (RMS) values) of the obtained silver films are about 3.23 nm and 6.80 nm, respectively. Using a BTG microsphere to observe a sample with a silver film deposited on its surface, we find that the surface roughness of the silver film will affect the imaging resolution and the range of focal image position (RFIP) of the BTG microsphere. When we use a 15-μm-diameter BTG microsphere to observe a 250-nm-diameter microsphere array and 580-nm-diameter microsphere array, the RFIP of the BTG microsphere increases with the RMS of the silver film increasing from 3.23 to 6.80 nm. Moreover, a 200-nm-diameter microsphere array can also be clearly discerned. The simulation results obtained by the commercial software COMSOL show that when the surface of a microsphere array sample is deposited with a rough silver film, the electric field intensity is enhanced not only in the gaps between adjacent microspheres, but also on the silver particles due to the excitation of localized surface plasmons. We propose that the scattering effect and the local electric field intensity enhancement caused by the rough silver film allow more high-frequency information of the sample to be coupled into the BTG microsphere, and thus improving the resolution and RFIP of the microsphere. As the imaging law of microsphere imaging still needs to be explored, our research work will be helpful in further revealing the mechanism in microsphere imaging.
      通信作者: 叶永红, yeyonghong@njnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61475073)资助的课题.
      Corresponding author: Ye Yong-Hong, yeyonghong@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61475073).
    [1]

    Abbe E 1873 Acchiv. Mikroskop. Anat. 9 413

    [2]

    Wang Z, Guo W, Li L, Luk'Yanchuk B, Khan A, Liu Z, Chen Z, Hong M 2011 Nat. Commun. 2 218

    [3]

    Li L, Guo W, Yan Y, Lee S, Wang T 2013 Light: Sci. Appl. 2 72

    [4]

    Wang S, Zhang D, Zhang H, Han X, Xu R 2015 Microsc. Res. Tech. 78 1128

    [5]

    Lin Q, Wang D, Wang Y, Rong L, Zhao J, Guo S, Wang M 2016 Opt. Quant. Electron. 48 557

    [6]

    Guo H, Han Y, Weng X, Zhao Y, Sui G, Wang Y, Zhuang S 2013 Opt. Express 21 2434

    [7]

    Hao X, Liu X, Kuang C, Li Y 2013 Appl. Phys. Lett. 102 013104

    [8]

    Wang S Y, Zhang H J, Zhang D X 2013 Acta Phys. Sin. 62 034207 (in Chinese)[王淑莹, 章海军, 张冬仙 2013 物理学报 62 034207]

    [9]

    Li J, Liu W, Li T, Rozen I, Zhao J, Bahari B, Kante B, Wang J 2016 Nano Lett. 16 6604

    [10]

    Lai H S S, Wang F, Li Y, Jia B, Liu L, Li W J 2016 Plos One 11 e0165194

    [11]

    Wang F F, Liu L Q, Yu H, Wen Y D, Yu P, Liu Z, Wang Y C, Li W J 2016 Nat. Commun. 7 13748

    [12]

    Krivitsky L A, Jia J W, Wang Z, Luk'Yanchuk B 2013 Sci. Rep. 3 3501

    [13]

    Yang H, Moullan N, Auwerx J, Gijs M A 2014 Small 10 1712

    [14]

    Wu L, Zhu H, Yan B, Wang Z, Zhou S 2015 J. Mater. Chem. C 3 10907

    [15]

    Yan B, Yue L, Wang Z 2016 Opt. Commun. 370 140

    [16]

    Lee S, Li L, Wang Z 2014 J. Opt. 16 015704

    [17]

    Zhou R, Wu M X, Shen F, Hong M H 2017 Acta Phys. Sin. 66 140702 (in Chinese)[周锐, 吴梦雪, 沈飞, 洪明辉 2017 物理学报 66 140702]

    [18]

    Darafsheh A, Limberopoulos N I, Derov J S, Walker Jr D E, Astratov V N 2014 Appl. Phys. Lett. 104 061117

    [19]

    Darafsheh A 2017 Opt. Lett. 42 735

    [20]

    Allen K W, Farahi N, Li Y, Limberopoulos N I, Walker D E, Urbas A M, Liberman V, Astratov V N 2015 Ann. Phys. 527 513

    [21]

    Hao X, Kuang C, Liu X, Li Y 2011 Appl. Phys. Lett. 99 203102

    [22]

    Lin Y H, Tsai D P 2012 Opt. Express 20 16205

    [23]

    Ye R, Ye Y H, Zhou Z T, Xu H H 2013 Langmuir 29 1796

    [24]

    Shi S, Zhang Z Y, He M Y, Li X P, Yang J, Du J L 2010 Opt. Express 18 10685

    [25]

    Duan Y B, Barbastathis G, Zhang B L 2013 Opt. Lett. 38 2988

  • [1]

    Abbe E 1873 Acchiv. Mikroskop. Anat. 9 413

    [2]

    Wang Z, Guo W, Li L, Luk'Yanchuk B, Khan A, Liu Z, Chen Z, Hong M 2011 Nat. Commun. 2 218

    [3]

    Li L, Guo W, Yan Y, Lee S, Wang T 2013 Light: Sci. Appl. 2 72

    [4]

    Wang S, Zhang D, Zhang H, Han X, Xu R 2015 Microsc. Res. Tech. 78 1128

    [5]

    Lin Q, Wang D, Wang Y, Rong L, Zhao J, Guo S, Wang M 2016 Opt. Quant. Electron. 48 557

    [6]

    Guo H, Han Y, Weng X, Zhao Y, Sui G, Wang Y, Zhuang S 2013 Opt. Express 21 2434

    [7]

    Hao X, Liu X, Kuang C, Li Y 2013 Appl. Phys. Lett. 102 013104

    [8]

    Wang S Y, Zhang H J, Zhang D X 2013 Acta Phys. Sin. 62 034207 (in Chinese)[王淑莹, 章海军, 张冬仙 2013 物理学报 62 034207]

    [9]

    Li J, Liu W, Li T, Rozen I, Zhao J, Bahari B, Kante B, Wang J 2016 Nano Lett. 16 6604

    [10]

    Lai H S S, Wang F, Li Y, Jia B, Liu L, Li W J 2016 Plos One 11 e0165194

    [11]

    Wang F F, Liu L Q, Yu H, Wen Y D, Yu P, Liu Z, Wang Y C, Li W J 2016 Nat. Commun. 7 13748

    [12]

    Krivitsky L A, Jia J W, Wang Z, Luk'Yanchuk B 2013 Sci. Rep. 3 3501

    [13]

    Yang H, Moullan N, Auwerx J, Gijs M A 2014 Small 10 1712

    [14]

    Wu L, Zhu H, Yan B, Wang Z, Zhou S 2015 J. Mater. Chem. C 3 10907

    [15]

    Yan B, Yue L, Wang Z 2016 Opt. Commun. 370 140

    [16]

    Lee S, Li L, Wang Z 2014 J. Opt. 16 015704

    [17]

    Zhou R, Wu M X, Shen F, Hong M H 2017 Acta Phys. Sin. 66 140702 (in Chinese)[周锐, 吴梦雪, 沈飞, 洪明辉 2017 物理学报 66 140702]

    [18]

    Darafsheh A, Limberopoulos N I, Derov J S, Walker Jr D E, Astratov V N 2014 Appl. Phys. Lett. 104 061117

    [19]

    Darafsheh A 2017 Opt. Lett. 42 735

    [20]

    Allen K W, Farahi N, Li Y, Limberopoulos N I, Walker D E, Urbas A M, Liberman V, Astratov V N 2015 Ann. Phys. 527 513

    [21]

    Hao X, Kuang C, Liu X, Li Y 2011 Appl. Phys. Lett. 99 203102

    [22]

    Lin Y H, Tsai D P 2012 Opt. Express 20 16205

    [23]

    Ye R, Ye Y H, Zhou Z T, Xu H H 2013 Langmuir 29 1796

    [24]

    Shi S, Zhang Z Y, He M Y, Li X P, Yang J, Du J L 2010 Opt. Express 18 10685

    [25]

    Duan Y B, Barbastathis G, Zhang B L 2013 Opt. Lett. 38 2988

  • [1] 张洋, 张志豪, 王宇剑, 薛晓兰, 陈令修, 石礼伟. 偏振调制扫描光学显微镜方法. 物理学报, 2024, 73(15): 157801. doi: 10.7498/aps.73.20240688
    [2] 韦芊屹, 倪洁蕾, 李灵, 张聿全, 袁小聪, 闵长俊. 超高时空分辨显微成像技术研究进展. 物理学报, 2023, 72(17): 178701. doi: 10.7498/aps.72.20230733
    [3] 张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才. 基于数字全息的血红细胞显微成像技术. 物理学报, 2020, 69(16): 164201. doi: 10.7498/aps.69.20200357
    [4] 王月桐, 商珞然, 赵远锦. 基于液滴界面不稳定性的表面粗糙聚合物微球的制备及其细胞捕获应用. 物理学报, 2020, 69(8): 084701. doi: 10.7498/aps.69.20200362
    [5] 程广贵, 张忠强, 丁建宁, 袁宁一, 许多. 石墨表面熔融硅的润湿行为研究. 物理学报, 2017, 66(3): 036801. doi: 10.7498/aps.66.036801
    [6] 宋延松, 杨建峰, 李福, 马小龙, 王红. 基于杂散光抑制要求的光学表面粗糙度控制方法研究. 物理学报, 2017, 66(19): 194201. doi: 10.7498/aps.66.194201
    [7] 刘双龙, 刘伟, 陈丹妮, 屈军乐, 牛憨笨. 相干反斯托克斯拉曼散射显微成像技术研究. 物理学报, 2016, 65(6): 064204. doi: 10.7498/aps.65.064204
    [8] 宋永锋, 李雄兵, 史亦韦, 倪培君. 表面粗糙度对固体内部超声背散射的影响. 物理学报, 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [9] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究. 物理学报, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [10] 陈苏婷, 胡海锋, 张闯. 基于激光散斑成像的零件表面粗糙度建模. 物理学报, 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [11] 刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像. 物理学报, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [12] 曹洪, 黄勇, 陈素芬, 张占文, 韦建军. 脉冲敲击技术对PI微球表面粗糙度的影响. 物理学报, 2013, 62(19): 196801. doi: 10.7498/aps.62.196801
    [13] 王淑莹, 章海军, 张冬仙. 基于微球透镜的任选区高分辨光学显微成像新方法研究. 物理学报, 2013, 62(3): 034207. doi: 10.7498/aps.62.034207
    [14] 周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔. 相干X射线衍射成像三维重建的数字模拟研究. 物理学报, 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [15] 周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔. 相干X射线衍射成像的数字模拟研究. 物理学报, 2011, 60(2): 028701. doi: 10.7498/aps.60.028701
    [16] 丁艳丽, 朱志立, 谷锦华, 史新伟, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响. 物理学报, 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [17] 谷锦华, 丁艳丽, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 椭圆偏振技术研究VHF-PECVD高速沉积微晶硅薄膜的异常标度行为. 物理学报, 2009, 58(6): 4123-4127. doi: 10.7498/aps.58.4123
    [18] 张宝玲, 何智兵, 吴卫东, 刘兴华, 杨向东. 占空比对微球a-C:H薄膜制备的影响. 物理学报, 2009, 58(9): 6436-6440. doi: 10.7498/aps.58.6436
    [19] 周炳卿, 刘丰珍, 朱美芳, 周玉琴, 吴忠华, 陈 兴. 微晶硅薄膜的表面粗糙度及其生长机制的X射线掠角反射研究. 物理学报, 2007, 56(4): 2422-2427. doi: 10.7498/aps.56.2422
    [20] 侯海虹, 孙喜莲, 申雁鸣, 邵建达, 范正修, 易 葵. 电子束蒸发氧化锆薄膜的粗糙度和光散射特性. 物理学报, 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
计量
  • 文章访问数:  6406
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-26
  • 修回日期:  2018-07-05
  • 刊出日期:  2018-11-05

/

返回文章
返回