搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于杂散光抑制要求的光学表面粗糙度控制方法研究

宋延松 杨建峰 李福 马小龙 王红

引用本文:
Citation:

基于杂散光抑制要求的光学表面粗糙度控制方法研究

宋延松, 杨建峰, 李福, 马小龙, 王红

Method of controlling optical surface roughness based on stray light requirements

Song Yan-Song, Yang Jian-Feng, Li Fu, Ma Xiao-Long, Wang Hong
PDF
导出引用
  • 光学表面加工误差引起的散射是影响光学系统成像性能的重要因素.描述表面总散射能量的均方根粗糙度是评定光学表面粗糙度的通用指标,但因其未能体现散射能量的空间分布,在表征光学表面散射对具体光学系统杂散光性能影响时存在准确度不足的局限.本文基于全积分散射及双向散射分布函数理论,针对杂散光抑制要求提出一种光学表面粗糙度控制的新方法.首先通过分析确定光学表面纹理中影响系统杂散光的空间频率范围,然后度量该频率带限范围内的表面均方根粗糙度,作为控制光学表面粗糙度的指标.以太阳磁场望远镜(MFT)为例进行方法验证,确定主镜表面纹理有效频率范围为018 mm-1,分析了主镜表面带限均方根粗糙度对MFT杂散光性能的影响.结果表明,带限均方根粗糙度与MFT杂散光性能之间的关系稳定性能大幅提高,由此验证了采用带限均方根粗糙度描述光学表面粗糙度,能更为准确地控制其对具体光学系统杂散光性能的影响.
    Scattering introduced by optical surface fabrication errors could degrade optical performance severely. Therefore, the optical designers are required to provide a roughness index for describing the specific surface or even all surfaces to ensure the final imaging performance. The surface root-mean-square (RMS) roughness is a common index to quantify surface topography. And there are also some available methods to acquire the surface RMS roughness based on bidirectional scattering distribution function theory or the angle spread function theory. However, the influence of the optical surface scattering on the optical system cannot be accurately revealed by the surface RMS roughness determined by these methods. On the one hand, the RMS roughness corresponds to an excessively wide spatial frequency range from 0 to 1/, where is the wavelength of the light. Consequently, it is difficult to measure the RMS roughness during manufacture. On the other hand, what really worsens the stray light performance of the system is only the surface profile located within a certain subinterval of the aforementioned frequency range, to put it in another way, the surface RMS roughness identified by the methods above is incompetent to quantify the amount of the energy that is surfacescattered to the detector. To address the issues above, in this paper we propose a novel approach to identifying the surface roughness. This method seeks to deduce the relation between optical surface RMS roughness and the stray light requirement of the system by dint of partial integrated scattering (PIS). In contrast to total integrated scattering, PIS counts the scattering light energy that could reach the detector. Hence, the RMS roughness identified in this way corresponds to the effective spatial frequency range that contributes to the stray light in the system. Firstly, the effective frequency range concerned with the system stray light level is identified through the analysis of the propagation path of the scattered light. Then, the surface RMS roughness would be measured within the established range according to the stray light requirement of the system and used to control the surface roughness as the roughness index during the optical manufacture process. The method not only considers the scattering as the surface characteristic, but also takes into account the influence of scattering on the system. Taking the solar magnetic field telescope (MFT) for example, the validity of the method is verified by comparing with the traditional methods. As manifested in the outcome, the effective frequency range of primary mirror is from 0 to 18 mm-1, and the surface RMS roughness identified in such a new way can stage the stray light performance of MFT in a more precise manner, which is more reliable to serve as a surface roughness index.
      通信作者: 宋延松, syansong@163.com
    • 基金项目: 国家自然科学基金(批准号:U1231204)资助的课题.
      Corresponding author: Song Yan-Song, syansong@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1231204).
    [1]

    Harvey J E, Lewotsky K L, Kotha A 1995 Appl. Opt. 34 3024

    [2]

    Yang W, Huang W, Xu W C, Shang H B 2013 Acta Opt. Sin. 33 0922001 (in Chinese)[杨旺, 黄玮, 许伟才, 尚红波 2013 光学学报 33 0922001]

    [3]

    Tan N Y, Xu Z J, Wei K, Zhang Y, Wang R 2017 Acta Phys. Sin. 66 044201 (in Chinese)[谭乃悦, 许中杰, 韦可, 张月, 王睿 2017 物理学报 66 044201]

    [4]

    Harvey J E 2013 Proc. SPIE 8862 88620Q

    [5]

    Fest E C 2013 Stray Light Analysis and Control (Washington:SPIE) pp64-70

    [6]

    Gallagher D, Wu Z, Larson B, Nelson P G, Oakley P, Sewell S, Tomczyk S 2016 Proc. SPIE 9906 990654

    [7]

    Harvey J E, Thompson A K 1995 Proc. SPIE 2576 155

    [8]

    Krywonos A, Harvey J E, Choi N 2011 J. Opt. Soc. Am. A 28 1121

    [9]

    Dittman M G, Grochocki F, Youngworth K 2006 Proc. SPIE 6291 62910P

    [10]

    Stover J C 1995 Optical Scattering:Measurement and Analysis (Bellingham:SPIE) pp32-38

    [11]

    Bennett H E, Porteus J O 1961 J. Opt. Soc. Am. A 51 123

    [12]

    Stover J C 2012 Proc. SPIE 8495 849503

    [13]

    Choi N, Harvey J E 2012 Proc. SPIE 8495 849504

    [14]

    Harvey J E, Schroeder S, Duparr A 2012 Opt. Engineer. 51 013402

    [15]

    Harvey J E 1977 Proc. SPIE 107 41

    [16]

    Harvey J E, Vernold C L 1997 Proc. SPIE 3141 113

    [17]

    Church E L 1988 Appl. Opt. 27 1518

    [18]

    Harvey J E, Choi N, Krywonos A 2009 Proc. SPIE 7426 74260I

    [19]

    Danilovic S, Gandorfer A, Lagg A Schssler, Solanki S K, Vgler A, Kastsukawa Y, Tsuneta S 2008 Astron. Astrophys. 484 L17

  • [1]

    Harvey J E, Lewotsky K L, Kotha A 1995 Appl. Opt. 34 3024

    [2]

    Yang W, Huang W, Xu W C, Shang H B 2013 Acta Opt. Sin. 33 0922001 (in Chinese)[杨旺, 黄玮, 许伟才, 尚红波 2013 光学学报 33 0922001]

    [3]

    Tan N Y, Xu Z J, Wei K, Zhang Y, Wang R 2017 Acta Phys. Sin. 66 044201 (in Chinese)[谭乃悦, 许中杰, 韦可, 张月, 王睿 2017 物理学报 66 044201]

    [4]

    Harvey J E 2013 Proc. SPIE 8862 88620Q

    [5]

    Fest E C 2013 Stray Light Analysis and Control (Washington:SPIE) pp64-70

    [6]

    Gallagher D, Wu Z, Larson B, Nelson P G, Oakley P, Sewell S, Tomczyk S 2016 Proc. SPIE 9906 990654

    [7]

    Harvey J E, Thompson A K 1995 Proc. SPIE 2576 155

    [8]

    Krywonos A, Harvey J E, Choi N 2011 J. Opt. Soc. Am. A 28 1121

    [9]

    Dittman M G, Grochocki F, Youngworth K 2006 Proc. SPIE 6291 62910P

    [10]

    Stover J C 1995 Optical Scattering:Measurement and Analysis (Bellingham:SPIE) pp32-38

    [11]

    Bennett H E, Porteus J O 1961 J. Opt. Soc. Am. A 51 123

    [12]

    Stover J C 2012 Proc. SPIE 8495 849503

    [13]

    Choi N, Harvey J E 2012 Proc. SPIE 8495 849504

    [14]

    Harvey J E, Schroeder S, Duparr A 2012 Opt. Engineer. 51 013402

    [15]

    Harvey J E 1977 Proc. SPIE 107 41

    [16]

    Harvey J E, Vernold C L 1997 Proc. SPIE 3141 113

    [17]

    Church E L 1988 Appl. Opt. 27 1518

    [18]

    Harvey J E, Choi N, Krywonos A 2009 Proc. SPIE 7426 74260I

    [19]

    Danilovic S, Gandorfer A, Lagg A Schssler, Solanki S K, Vgler A, Kastsukawa Y, Tsuneta S 2008 Astron. Astrophys. 484 L17

  • [1] 罗进宝, VasiliyPelenovich, 曾晓梅, 郝中华, 张翔宇, 左文彬, 付德君. 离子剂量比在气体团簇多级能量平坦化模式中的作用. 物理学报, 2021, 70(22): 223601. doi: 10.7498/aps.70.20202011
    [2] 闫博, 陈力, 陈爽, 李猛, 殷一民, 周江宁. 结构光照明技术在二维激光诱导荧光成像去杂散光中的应用. 物理学报, 2019, 68(21): 218701. doi: 10.7498/aps.68.20190977
    [3] 张冉, 常青, 李桦. 气体-表面相互作用的分子动力学模拟研究. 物理学报, 2018, 67(22): 223401. doi: 10.7498/aps.67.20181608
    [4] 王建国, 杨松林, 叶永红. 样品表面银膜的粗糙度对钛酸钡微球成像性能的影响. 物理学报, 2018, 67(21): 214209. doi: 10.7498/aps.67.20180823
    [5] 程广贵, 张忠强, 丁建宁, 袁宁一, 许多. 石墨表面熔融硅的润湿行为研究. 物理学报, 2017, 66(3): 036801. doi: 10.7498/aps.66.036801
    [6] 宋永锋, 李雄兵, 史亦韦, 倪培君. 表面粗糙度对固体内部超声背散射的影响. 物理学报, 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [7] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究. 物理学报, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [8] 陈苏婷, 胡海锋, 张闯. 基于激光散斑成像的零件表面粗糙度建模. 物理学报, 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [9] 李资政, 杨海贵, 王笑夷, 高劲松. 具有大面积均匀性、高质量的大尺寸中阶梯光栅铝膜的研究. 物理学报, 2014, 63(15): 157801. doi: 10.7498/aps.63.157801
    [10] 马靖杰, 夏辉, 唐刚. 含关联噪声的空间分数阶随机生长方程的动力学标度行为研究. 物理学报, 2013, 62(2): 020501. doi: 10.7498/aps.62.020501
    [11] 柯川, 赵成利, 苟富均, 赵勇. 分子动力学模拟H原子与Si的表面相互作用. 物理学报, 2013, 62(16): 165203. doi: 10.7498/aps.62.165203
    [12] 曹洪, 黄勇, 陈素芬, 张占文, 韦建军. 脉冲敲击技术对PI微球表面粗糙度的影响. 物理学报, 2013, 62(19): 196801. doi: 10.7498/aps.62.196801
    [13] 于淼, 高劲松, 张建, 徐念喜. 二维光栅与周期性缝隙阵列组合薄膜结构的杂散光抑制. 物理学报, 2013, 62(20): 204208. doi: 10.7498/aps.62.204208
    [14] 黄晓玉, 程新路, 徐嘉靖, 吴卫东. Be原子在Be基底上的沉积过程研究. 物理学报, 2012, 61(9): 096801. doi: 10.7498/aps.61.096801
    [15] 马海敏, 洪亮, 尹伊, 许坚, 叶辉. 超亲水性SiO2-TiO2纳米颗粒阵列结构的制备与性能研究. 物理学报, 2011, 60(9): 098105. doi: 10.7498/aps.60.098105
    [16] 丁艳丽, 朱志立, 谷锦华, 史新伟, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响. 物理学报, 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [17] 谷锦华, 丁艳丽, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 椭圆偏振技术研究VHF-PECVD高速沉积微晶硅薄膜的异常标度行为. 物理学报, 2009, 58(6): 4123-4127. doi: 10.7498/aps.58.4123
    [18] 周炳卿, 刘丰珍, 朱美芳, 周玉琴, 吴忠华, 陈 兴. 微晶硅薄膜的表面粗糙度及其生长机制的X射线掠角反射研究. 物理学报, 2007, 56(4): 2422-2427. doi: 10.7498/aps.56.2422
    [19] 侯海虹, 孙喜莲, 申雁鸣, 邵建达, 范正修, 易 葵. 电子束蒸发氧化锆薄膜的粗糙度和光散射特性. 物理学报, 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
    [20] 李明华, 于广华, 姜宏伟, 蔡建旺, 朱逢吾. Ta,Ta/Cu缓冲层对NiFe/Fe Mn双层膜交换偏置场的影响. 物理学报, 2001, 50(11): 2230-2234. doi: 10.7498/aps.50.2230
计量
  • 文章访问数:  6635
  • PDF下载量:  275
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-26
  • 修回日期:  2017-07-17
  • 刊出日期:  2017-10-05

/

返回文章
返回