搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气体-表面相互作用的分子动力学模拟研究

张冉 常青 李桦

引用本文:
Citation:

气体-表面相互作用的分子动力学模拟研究

张冉, 常青, 李桦

Molecular dynamics simulations on scattering of Ar molecules on smooth and rough surfaces

Zhang Ran, Chang Qing, Li Hua
PDF
导出引用
  • 采用分子动力学模拟方法研究了气体分子Ar在光滑和粗糙Pt表面上的散射规律.提出了一种速度抽样方法,计算了不同温度条件下气体分子对光滑和粗糙表面的切向动量适应系数和吸附概率.结果显示:光滑表面条件下,气体分子的切向动量系数和吸附概率都随着温度的升高而降低;粗糙度对气体分子切向动量与表面的适应具有极大的促进作用,当粗糙度足够大时,切向动量适应系数的大小趋近于1.0,对温度的敏感性也逐渐降低.采用粒子束方法对气体分子在光滑和粗糙表面上的散射规律进行了定量分析.总结了散射过程中气体分子的典型轨迹和动量变化规律,将气体分子在光滑表面的散射分为两种类型:单次碰撞后散射和多次碰撞后散射.单次碰撞后散射的气体分子平均切向动量有所减小,而经过多次碰撞后散射的气体分子则倾向于保持原有的平均切向动量.对于粗糙表面,粗糙度的存在使气体分子与表面间的动量和能量适应更加充分,导致气体分子在较粗糙表面上散射后的平均切向动量大幅减小并接近于0,且气体分子在表面上经历的碰撞次数越多,其散射后的能量损失越严重.
    Molecular dynamics method is used to investigate the scattering characteristics of Ar molecule on smooth and rough Pt(100) surface. In this paper, a velocity sampling method is proposed to obtain the tangential momentum accommodation coefficients (TMACs) and the sticking probabilities of gas molecules on smooth and rough surface under different temperature conditions. The results show that the TMAC and the sticking probability decrease with increasing temperature under smooth surface condition. The results of our work are in excellent agreement with the results of the reference for a three-dimensional gas flow in a nanochannel. Unlike the scenario of smooth surfaces, the roughness of rough surfaces greatly promotes the accommodation of tangential momentum between the gas molecules and surfaces. When the roughness becoming larger, the TMAC approaches to 1.0 and the sensitivity to temperature decreases gradually. Unlike the relationship between TMAC and roughness, although the sticking probability of gas molecules increases with roughness increasing, its dependence on temperature does not change. Furthermore, the beam method where the incident velocity and angle are determined is used to quantitatively analyze the scattering characteristics of gas molecules on different surfaces. According to the number of collisions between gas molecule and the surface, we classify the scattering of gas molecules on a smooth surface into two types: single collision scattering and multiple collision scattering. For those gas molecules that experience one collision, their average tangential momentum decreases to a certain extent, however, the gas molecules scattered after multiple collisions tend to maintain the original tangential momentum. For gas molecules reflected from the smooth surface, their velocity distribution exhibits a typical bimodal distribution. The position of the first peak appears at the incident velocity value, and the position of the second peak appears at a velocity value of zero. Regarding rough surfaces, the existence of roughness changes the mode of exchange of momentum and energy between gas molecules and walls, resulting in a significant decrease in the average tangential momentum of gas molecules scattered on rough surfaces. Besides, the more the gas molecules colliding on the surface, the more severe the energy loss after scattering will be. For gas molecules reflected from the rough surfaces, their velocity distribution conforms to the characteristics of Gaussian distribution.
      通信作者: 李桦, zr07024221@126.com
    • 基金项目: 国家自然科学基金(批准号:11472004)资助的课题.
      Corresponding author: Li Hua, zr07024221@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11472004).
    [1]

    Karniadakis G, Beskok A, Aluru N 2005 Micro Flows and Nano Flows: Fundamentals and Simulation(New York: Springer) pp2-8

    [2]

    Verbridge S S, Craighead H G, Parpia J M 2008 Appl. Phys. Lett. 92 013112

    [3]

    Padilla J F, Boyd I D 2009 J. Thermo. Phys. Heat Tr. 23 96

    [4]

    Rovenskaya O I 2015 Int. J. Heat Mass Trans. 89 1024

    [5]

    Hadj Nacer M, Graur I, Perrier P, Molans J G, Wuest M 2014 J. Vac. Sci. Technol. A 32 021621

    [6]

    Shen Q 2003 Rarefied Gas Dynamics (Beijing: National Defense Industry Press) p121 (in Chinese) [沈青 2003 稀薄气体动力学(北京: 国防工业出版社) 第121页]

    [7]

    Hurlbut F C 1997 Adv. Mech. 27 549 (in Chinese) [Hurlbut F C 1997 力学进展 27 549]

    [8]

    Maxwell J C 1879 Phil. Trans. R. Soc. Lond. 170 231

    [9]

    Ohwada T, Sone Y, Aoki K 1989 Phys. Fluids A 1 1588

    [10]

    Lockerby D A, Reese J M, Emerson D R, Barber R W 2004 Phys. Rev. E 70 017303

    [11]

    Pan L S, Liu G R, Lam K Y 1999 J. Micromech. Microeng. 9 89

    [12]

    Wu L, Bogy D B 2003 Trans. ASME J. Tribol. 125 558

    [13]

    Lockerby D A, Reese J M 2008 J. Fluid. Mech. 604 235

    [14]

    Li Q, He Y L, Tang G H, Tao W Q 2011 Microfluid Nanofluid 10 607

    [15]

    Weng C I, Li W L, Hwang C C 1999 Nanotechnology 10 373

    [16]

    Beskok A, Karniadakis G E 1999 Microscale Thermophys. Eng. 3 43

    [17]

    Zhang W M, Meng G, Wei X Y 2012 Microfluid Nanofluid 13 845

    [18]

    Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int. J. Mol. Sci. 10 4638

    [19]

    Markvoort A J, Hilbers P A J, Nedea S V 2005 Phys. Rev. E 71 066702

    [20]

    Arya G, Chang H C, Maginn E J 2003 Mol. Simul. 29 697

    [21]

    Yamamoto K 2002 JSME Int. J. Ser. B 45 788

    [22]

    Cao B Y, Chen M, Guo Z Y 2005 Appl. Phys. Lett. 86 091905

    [23]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 物理学报 55 5305]

    [24]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

    [25]

    Spijker P, Markvoort A J, Nedea S V, Hilbers P A J 2010 Phys. Rev. E 81 011203

    [26]

    Sun J, Li Z X 2008 Mol. Phys. 106 2325

    [27]

    Sun J, Li Z X 2010 Comput. Fluids 39 1645

    [28]

    Sun J, Li Z X 2011 Heat Transfer Eng. 32 658

    [29]

    Barisik M, Beskok A 2011 Microfluid Nanofluid 11 269

    [30]

    Barisik M, Beskok A 2012 Microfluid Nanofluid 13 789

    [31]

    Chirita V, Pailthorpe B A, Collins R E 1993 Appl. Phys. 26 133

    [32]

    Chirita V, Pailthorpe B A, Collins R E 1997 Nucl. Instrum. Meth. B 4 12

    [33]

    Finger G W, Kapat J S, Bhattacharya A 2007 J. Fluids Eng. 129 31

    [34]

    Pham T T, To Q D, Lauriat G, Leonard C 2012 Phys. Rev. E 86 051201

    [35]

    Reinhold J, Veltzke T, Wells B, Schneider J, Meierhofer F, Colombi Ciacchi L, Chaffee A 2014 Comput. Fluids 97 31

    [36]

    Kuscer I 1974 Proceeding of the Ninth International Symposium Goettengen, Germany, July 15-20, 1974 p21

    [37]

    Maruyama S 2000 Advances in Numerical Heat Transfer (Vol.2) (Boca Raton: CRC Press) pp189

    [38]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulation (New York: Cambridge University Press) pp4-5

  • [1]

    Karniadakis G, Beskok A, Aluru N 2005 Micro Flows and Nano Flows: Fundamentals and Simulation(New York: Springer) pp2-8

    [2]

    Verbridge S S, Craighead H G, Parpia J M 2008 Appl. Phys. Lett. 92 013112

    [3]

    Padilla J F, Boyd I D 2009 J. Thermo. Phys. Heat Tr. 23 96

    [4]

    Rovenskaya O I 2015 Int. J. Heat Mass Trans. 89 1024

    [5]

    Hadj Nacer M, Graur I, Perrier P, Molans J G, Wuest M 2014 J. Vac. Sci. Technol. A 32 021621

    [6]

    Shen Q 2003 Rarefied Gas Dynamics (Beijing: National Defense Industry Press) p121 (in Chinese) [沈青 2003 稀薄气体动力学(北京: 国防工业出版社) 第121页]

    [7]

    Hurlbut F C 1997 Adv. Mech. 27 549 (in Chinese) [Hurlbut F C 1997 力学进展 27 549]

    [8]

    Maxwell J C 1879 Phil. Trans. R. Soc. Lond. 170 231

    [9]

    Ohwada T, Sone Y, Aoki K 1989 Phys. Fluids A 1 1588

    [10]

    Lockerby D A, Reese J M, Emerson D R, Barber R W 2004 Phys. Rev. E 70 017303

    [11]

    Pan L S, Liu G R, Lam K Y 1999 J. Micromech. Microeng. 9 89

    [12]

    Wu L, Bogy D B 2003 Trans. ASME J. Tribol. 125 558

    [13]

    Lockerby D A, Reese J M 2008 J. Fluid. Mech. 604 235

    [14]

    Li Q, He Y L, Tang G H, Tao W Q 2011 Microfluid Nanofluid 10 607

    [15]

    Weng C I, Li W L, Hwang C C 1999 Nanotechnology 10 373

    [16]

    Beskok A, Karniadakis G E 1999 Microscale Thermophys. Eng. 3 43

    [17]

    Zhang W M, Meng G, Wei X Y 2012 Microfluid Nanofluid 13 845

    [18]

    Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int. J. Mol. Sci. 10 4638

    [19]

    Markvoort A J, Hilbers P A J, Nedea S V 2005 Phys. Rev. E 71 066702

    [20]

    Arya G, Chang H C, Maginn E J 2003 Mol. Simul. 29 697

    [21]

    Yamamoto K 2002 JSME Int. J. Ser. B 45 788

    [22]

    Cao B Y, Chen M, Guo Z Y 2005 Appl. Phys. Lett. 86 091905

    [23]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 物理学报 55 5305]

    [24]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

    [25]

    Spijker P, Markvoort A J, Nedea S V, Hilbers P A J 2010 Phys. Rev. E 81 011203

    [26]

    Sun J, Li Z X 2008 Mol. Phys. 106 2325

    [27]

    Sun J, Li Z X 2010 Comput. Fluids 39 1645

    [28]

    Sun J, Li Z X 2011 Heat Transfer Eng. 32 658

    [29]

    Barisik M, Beskok A 2011 Microfluid Nanofluid 11 269

    [30]

    Barisik M, Beskok A 2012 Microfluid Nanofluid 13 789

    [31]

    Chirita V, Pailthorpe B A, Collins R E 1993 Appl. Phys. 26 133

    [32]

    Chirita V, Pailthorpe B A, Collins R E 1997 Nucl. Instrum. Meth. B 4 12

    [33]

    Finger G W, Kapat J S, Bhattacharya A 2007 J. Fluids Eng. 129 31

    [34]

    Pham T T, To Q D, Lauriat G, Leonard C 2012 Phys. Rev. E 86 051201

    [35]

    Reinhold J, Veltzke T, Wells B, Schneider J, Meierhofer F, Colombi Ciacchi L, Chaffee A 2014 Comput. Fluids 97 31

    [36]

    Kuscer I 1974 Proceeding of the Ninth International Symposium Goettengen, Germany, July 15-20, 1974 p21

    [37]

    Maruyama S 2000 Advances in Numerical Heat Transfer (Vol.2) (Boca Raton: CRC Press) pp189

    [38]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulation (New York: Cambridge University Press) pp4-5

  • [1] 罗进宝, VasiliyPelenovich, 曾晓梅, 郝中华, 张翔宇, 左文彬, 付德君. 离子剂量比在气体团簇多级能量平坦化模式中的作用. 物理学报, 2021, 70(22): 223601. doi: 10.7498/aps.70.20202011
    [2] 张烨, 张冉, 常青, 李桦. 壁面效应对纳米尺度气体流动的影响规律研究. 物理学报, 2019, 68(12): 124702. doi: 10.7498/aps.68.20190248
    [3] 张冉, 谢文佳, 常青, 李桦. 纳米通道内气体剪切流动的分子动力学模拟. 物理学报, 2018, 67(8): 084701. doi: 10.7498/aps.67.20172706
    [4] 王建国, 杨松林, 叶永红. 样品表面银膜的粗糙度对钛酸钡微球成像性能的影响. 物理学报, 2018, 67(21): 214209. doi: 10.7498/aps.67.20180823
    [5] 程广贵, 张忠强, 丁建宁, 袁宁一, 许多. 石墨表面熔融硅的润湿行为研究. 物理学报, 2017, 66(3): 036801. doi: 10.7498/aps.66.036801
    [6] 宋延松, 杨建峰, 李福, 马小龙, 王红. 基于杂散光抑制要求的光学表面粗糙度控制方法研究. 物理学报, 2017, 66(19): 194201. doi: 10.7498/aps.66.194201
    [7] 宋永锋, 李雄兵, 史亦韦, 倪培君. 表面粗糙度对固体内部超声背散射的影响. 物理学报, 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [8] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究. 物理学报, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [9] 陈苏婷, 胡海锋, 张闯. 基于激光散斑成像的零件表面粗糙度建模. 物理学报, 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [10] 李资政, 杨海贵, 王笑夷, 高劲松. 具有大面积均匀性、高质量的大尺寸中阶梯光栅铝膜的研究. 物理学报, 2014, 63(15): 157801. doi: 10.7498/aps.63.157801
    [11] 马靖杰, 夏辉, 唐刚. 含关联噪声的空间分数阶随机生长方程的动力学标度行为研究. 物理学报, 2013, 62(2): 020501. doi: 10.7498/aps.62.020501
    [12] 曹洪, 黄勇, 陈素芬, 张占文, 韦建军. 脉冲敲击技术对PI微球表面粗糙度的影响. 物理学报, 2013, 62(19): 196801. doi: 10.7498/aps.62.196801
    [13] 柯川, 赵成利, 苟富均, 赵勇. 分子动力学模拟H原子与Si的表面相互作用. 物理学报, 2013, 62(16): 165203. doi: 10.7498/aps.62.165203
    [14] 黄晓玉, 程新路, 徐嘉靖, 吴卫东. Be原子在Be基底上的沉积过程研究. 物理学报, 2012, 61(9): 096801. doi: 10.7498/aps.61.096801
    [15] 马海敏, 洪亮, 尹伊, 许坚, 叶辉. 超亲水性SiO2-TiO2纳米颗粒阵列结构的制备与性能研究. 物理学报, 2011, 60(9): 098105. doi: 10.7498/aps.60.098105
    [16] 丁艳丽, 朱志立, 谷锦华, 史新伟, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响. 物理学报, 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [17] 谷锦华, 丁艳丽, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 椭圆偏振技术研究VHF-PECVD高速沉积微晶硅薄膜的异常标度行为. 物理学报, 2009, 58(6): 4123-4127. doi: 10.7498/aps.58.4123
    [18] 周炳卿, 刘丰珍, 朱美芳, 周玉琴, 吴忠华, 陈 兴. 微晶硅薄膜的表面粗糙度及其生长机制的X射线掠角反射研究. 物理学报, 2007, 56(4): 2422-2427. doi: 10.7498/aps.56.2422
    [19] 侯海虹, 孙喜莲, 申雁鸣, 邵建达, 范正修, 易 葵. 电子束蒸发氧化锆薄膜的粗糙度和光散射特性. 物理学报, 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
    [20] 李明华, 于广华, 姜宏伟, 蔡建旺, 朱逢吾. Ta,Ta/Cu缓冲层对NiFe/Fe Mn双层膜交换偏置场的影响. 物理学报, 2001, 50(11): 2230-2234. doi: 10.7498/aps.50.2230
计量
  • 文章访问数:  2305
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-29
  • 修回日期:  2018-09-27
  • 刊出日期:  2019-11-20

气体-表面相互作用的分子动力学模拟研究

  • 1. 国防科技大学空天科学学院, 长沙 410073
  • 通信作者: 李桦, zr07024221@126.com
    基金项目: 国家自然科学基金(批准号:11472004)资助的课题.

摘要: 采用分子动力学模拟方法研究了气体分子Ar在光滑和粗糙Pt表面上的散射规律.提出了一种速度抽样方法,计算了不同温度条件下气体分子对光滑和粗糙表面的切向动量适应系数和吸附概率.结果显示:光滑表面条件下,气体分子的切向动量系数和吸附概率都随着温度的升高而降低;粗糙度对气体分子切向动量与表面的适应具有极大的促进作用,当粗糙度足够大时,切向动量适应系数的大小趋近于1.0,对温度的敏感性也逐渐降低.采用粒子束方法对气体分子在光滑和粗糙表面上的散射规律进行了定量分析.总结了散射过程中气体分子的典型轨迹和动量变化规律,将气体分子在光滑表面的散射分为两种类型:单次碰撞后散射和多次碰撞后散射.单次碰撞后散射的气体分子平均切向动量有所减小,而经过多次碰撞后散射的气体分子则倾向于保持原有的平均切向动量.对于粗糙表面,粗糙度的存在使气体分子与表面间的动量和能量适应更加充分,导致气体分子在较粗糙表面上散射后的平均切向动量大幅减小并接近于0,且气体分子在表面上经历的碰撞次数越多,其散射后的能量损失越严重.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回