搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米通道内气体剪切流动的分子动力学模拟

张冉 谢文佳 常青 李桦

引用本文:
Citation:

纳米通道内气体剪切流动的分子动力学模拟

张冉, 谢文佳, 常青, 李桦

Molecular dynamics simulations of surface effects on Couette gas flows in nanochannels

Zhang Ran, Xie Wen-Jia, Chang Qing, Li Hua
PDF
导出引用
  • 采用分子动力学模拟方法研究了表面力场对纳米通道内气体剪切流动的影响规律.结果显示通道内的气体流动分为两个区域:受壁面力场影响的近壁区域和不受壁面力场影响的主流区域.近壁区域内,气体流动特性和气体动力学理论预测差别很大,密度和速度急剧增大并出现峰值,正应力变化剧烈且各向异性,剪切应力在距壁面一个分子直径处出现突变.主流区域的气体流动特性与气体动力学理论预测相符合,该区域内的密度、正应力与剪切应力均为恒定值,速度分布亦符合应力-应变的线性响应关系.不同通道高度及密度下,近壁区域的归一化密度、速度及应力分布一致,表明近壁区域的气体流动特性仅由壁面力场所决定.随着壁面对气体分子势能作用的增强,气体分子在近壁区域的密度和速度随之增大,直至形成吸附层,导致速度滑移消失.通过剪切应力与切向动量适应系数(TMAC)的关系,得到不同壁面势能作用下的TMAC值,结果表明壁面对气体分子的势能作用越强,气体分子越容易在壁面发生漫反射.
    Molecular dynamics method is used to investigate gas flows in nanoscale channels. A set of Couette gas flows with the same Knudsen number but different channel heights and densities is simulated to study the dimensional effects on dynamically similar flow conditions. Results show that the gas flow in the channels is divided into two regions:near wall region affected by a wall force field and bulk flow region affected by no wall force field. The flow characteristics in the bulk flow region are in good accordance with the kinetic theory predictions, which are characterized by constant density, normal stress, shear stress and linear velocity distribution while within the near wall region, the velocity, density, normal stress and shear stress distributions exhibit deviations from the kinetic theory predictions. The density and velocity sharply increase, accompanied with a single peak appearing. The normal stress which is dominated by the surface virial is anisotropic and changes drastically. Shear stress value is constant in bulk flow region and part of the near wall region, while the surface virial induces variation at a place about one atom diameter far from the wall. In the near wall region, the normalized density, velocity and stress tensor are constant under different channel heights and densities, which indicates that the gas flow characteristics in this area are determined by the wall force field. Besides, the tangential momentum accommodation coefficient (TMAC) values for different cases can be obtained through the relationship between TAMC and shear stress. It is found that under the same Knudsen number, the TMAC remains constant no matter what the height and density are. Furthermore, another set of Couette gas flows with different gas-surface potential strength ratios but the same channel height and density is simulated to study the gas-surface interaction effects on nanoscale gas flow. The results show that the gas density and velocity in the near wall region increase with increasing potential strength ratio between wall atoms and gas molecules. Large potential strength ratio cases (C 3.0) result in velocity sticking on the surface, which is induced by the gas molecule accumulation and surface adsorption. Using the same approach, the TMAC values for various potential strength ratios are calculated, varying from 0.63 to 0.96 for different cases (C=0.5-4.0), which indicates that the stronger the potential energy acting on the gas molecules, the more easily the gas molecules generate the diffuse reflection on the walls
      通信作者: 李桦, zr07024221@126.com
    • 基金项目: 国家自然科学基金(批准号:11472004)资助的课题.
      Corresponding author: Li Hua, zr07024221@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11472004).
    [1]

    Ekinci K L, Roukes M L 2005 Rev. Sci. Instrum. 76 061101

    [2]

    Verbridge S S, Craighead H G, Parpia J M 2008 Appl. Phys. Lett. 92 013112

    [3]

    Boettcher U, Li H, Callafon R A, Talke F E 2011 IEEE T. Magn. 47 1823

    [4]

    Song H Q, Yu M X, Z H U W Y, Zhang Y, Jiang S X 2013 Chin. Phys. Lett. 30 014701

    [5]

    Tsien H S 1964 J. Aero. Sci. 13 653

    [6]

    Zhang Z Q, Zhang H W, Ye H F 2009 Appl. Phys. Lett. 95 154101

    [7]

    Zhang H W, Zhang Z Q, Zheng Y G, Ye H F 2010 Phys. Rev. E 81 066303

    [8]

    Sone Y, Takata S, Ohwada T 1990 Euro. J. Mech. B:Fluids 9 273

    [9]

    Taheri P, Torrilhon M, Struchtrup H 2009 Phys. Fluids 21 017102

    [10]

    Dehdashti E 2016 Chin. Phys. B 25 024702

    [11]

    Bird G A 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford:Oxford University Press) pp199-206

    [12]

    Fan J, Shen C 1999 J. Comput. Phys. 167 393

    [13]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulation (New York:Cambridge University Press) pp4-5

    [14]

    Thompson P A, Troian S M 1997 Nature 389 360

    [15]

    Zhu Y X, Granick S 2002 Phys. Rev. Lett. 88 106102

    [16]

    Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int. J. Mol. Sci. 10 4638

    [17]

    Finger G W, Kapat J S, Bhattacharya A 2007 J. Fluid Eng.-T. ASME 129 31

    [18]

    Sun J, Li Z X 2008 Mol. Phys. 106 2325

    [19]

    Sun J, Li Z X 2010 Comput. Fluids 39 1645

    [20]

    Markvoort A J, Hilbers P A J, Nedea S V 2005 Phys. Rev. E 71 066702

    [21]

    Arya G, Chang H C, Maginn E J 2003 Mol. Simul. 29 697

    [22]

    Cao B Y, Chen M, Guo Z Y 2005 Appl. Phys. Lett. 86 091905

    [23]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese)[曹炳阳, 陈民, 过增元 2006 物理学报 55 5305]

    [24]

    Xie H, Liu C 2012 AIP Adv. 2 042126

    [25]

    Barisik M, Beskok A 2011 Microfluid Nanofluid 11 269

    [26]

    Barisik M, Beskok A 2012 Microfluid Nanofluid 13 789

    [27]

    Bao F B, Huang Y L, Qiu L M, Lin J Z 2014 Mol. Phys. 113 561

    [28]

    Bao F B, Huang Y L, Zhang Y H, Lin J Z 2015 Microfluid Nanofluid 18 1075

    [29]

    Yang Y T, Callegari C, Feng X L, Roukes M L 2011 Nano Lett. 11 1753

    [30]

    Zhang W M, Meng G, Zhou J B, Chen J Y 2009 Sensors 9 3854

    [31]

    Wu L, Bogy D B 2002 J. Tribol. -T. ASME 124 562

    [32]

    Allen M P, Tildesley D J 1991 Computer Simulation of Liquids (Oxford:Oxford University Press) pp145-146

    [33]

    Hook J R, Hall H E 1991 Solid State Physics (Chichester:Wiley) pp96-106

    [34]

    Evans D J, Hoover W G 1986 Annu. Rev. Fluid Mech. 18 243

    [35]

    Irving J H, Kirkwood J G 1950 J. Chem. Phys. 18 817

    [36]

    Todd B D, Evans D J, Davis P J 1995 Phys. Rev. E 52 1627

    [37]

    Fukui S, Shimada H, Yamane K, Matsuoka H 2005 Microsyst. Technol. 11 805

    [38]

    Bahukudumbi P, Park J H, Beskok A 2003 Microscale Thermophy. Eng. 7 291

  • [1]

    Ekinci K L, Roukes M L 2005 Rev. Sci. Instrum. 76 061101

    [2]

    Verbridge S S, Craighead H G, Parpia J M 2008 Appl. Phys. Lett. 92 013112

    [3]

    Boettcher U, Li H, Callafon R A, Talke F E 2011 IEEE T. Magn. 47 1823

    [4]

    Song H Q, Yu M X, Z H U W Y, Zhang Y, Jiang S X 2013 Chin. Phys. Lett. 30 014701

    [5]

    Tsien H S 1964 J. Aero. Sci. 13 653

    [6]

    Zhang Z Q, Zhang H W, Ye H F 2009 Appl. Phys. Lett. 95 154101

    [7]

    Zhang H W, Zhang Z Q, Zheng Y G, Ye H F 2010 Phys. Rev. E 81 066303

    [8]

    Sone Y, Takata S, Ohwada T 1990 Euro. J. Mech. B:Fluids 9 273

    [9]

    Taheri P, Torrilhon M, Struchtrup H 2009 Phys. Fluids 21 017102

    [10]

    Dehdashti E 2016 Chin. Phys. B 25 024702

    [11]

    Bird G A 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford:Oxford University Press) pp199-206

    [12]

    Fan J, Shen C 1999 J. Comput. Phys. 167 393

    [13]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulation (New York:Cambridge University Press) pp4-5

    [14]

    Thompson P A, Troian S M 1997 Nature 389 360

    [15]

    Zhu Y X, Granick S 2002 Phys. Rev. Lett. 88 106102

    [16]

    Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int. J. Mol. Sci. 10 4638

    [17]

    Finger G W, Kapat J S, Bhattacharya A 2007 J. Fluid Eng.-T. ASME 129 31

    [18]

    Sun J, Li Z X 2008 Mol. Phys. 106 2325

    [19]

    Sun J, Li Z X 2010 Comput. Fluids 39 1645

    [20]

    Markvoort A J, Hilbers P A J, Nedea S V 2005 Phys. Rev. E 71 066702

    [21]

    Arya G, Chang H C, Maginn E J 2003 Mol. Simul. 29 697

    [22]

    Cao B Y, Chen M, Guo Z Y 2005 Appl. Phys. Lett. 86 091905

    [23]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese)[曹炳阳, 陈民, 过增元 2006 物理学报 55 5305]

    [24]

    Xie H, Liu C 2012 AIP Adv. 2 042126

    [25]

    Barisik M, Beskok A 2011 Microfluid Nanofluid 11 269

    [26]

    Barisik M, Beskok A 2012 Microfluid Nanofluid 13 789

    [27]

    Bao F B, Huang Y L, Qiu L M, Lin J Z 2014 Mol. Phys. 113 561

    [28]

    Bao F B, Huang Y L, Zhang Y H, Lin J Z 2015 Microfluid Nanofluid 18 1075

    [29]

    Yang Y T, Callegari C, Feng X L, Roukes M L 2011 Nano Lett. 11 1753

    [30]

    Zhang W M, Meng G, Zhou J B, Chen J Y 2009 Sensors 9 3854

    [31]

    Wu L, Bogy D B 2002 J. Tribol. -T. ASME 124 562

    [32]

    Allen M P, Tildesley D J 1991 Computer Simulation of Liquids (Oxford:Oxford University Press) pp145-146

    [33]

    Hook J R, Hall H E 1991 Solid State Physics (Chichester:Wiley) pp96-106

    [34]

    Evans D J, Hoover W G 1986 Annu. Rev. Fluid Mech. 18 243

    [35]

    Irving J H, Kirkwood J G 1950 J. Chem. Phys. 18 817

    [36]

    Todd B D, Evans D J, Davis P J 1995 Phys. Rev. E 52 1627

    [37]

    Fukui S, Shimada H, Yamane K, Matsuoka H 2005 Microsyst. Technol. 11 805

    [38]

    Bahukudumbi P, Park J H, Beskok A 2003 Microscale Thermophy. Eng. 7 291

  • [1] 李婷, 毕晓月, 孔婧文. 剪切形变下磷烯的力学和热学性能. 物理学报, 2023, 72(12): 126201. doi: 10.7498/aps.72.20230084
    [2] 杨志平, 孔熙, 石发展, 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, 2022, 71(6): 067601. doi: 10.7498/aps.71.20211348
    [3] 杨志平, 孔熙, 石发展(Fazhan Shi), 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211348
    [4] 方芳, 鲍麟, 童秉纲. 基于斜驻点模型的剪切层撞击壁面流动及传热特性. 物理学报, 2020, 69(21): 214401. doi: 10.7498/aps.69.20201000
    [5] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究. 物理学报, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [6] 张烨, 张冉, 常青, 李桦. 壁面效应对纳米尺度气体流动的影响规律研究. 物理学报, 2019, 68(12): 124702. doi: 10.7498/aps.68.20190248
    [7] 张冉, 常青, 李桦. 气体-表面相互作用的分子动力学模拟研究. 物理学报, 2018, 67(22): 223401. doi: 10.7498/aps.67.20181608
    [8] 张程宾, 于程, 刘向东, 金瓯, 陈永平. 剪切流场中双重乳液稳态形变. 物理学报, 2016, 65(20): 204704. doi: 10.7498/aps.65.204704
    [9] 姜艳, 刘贵立. 剪切形变对硼氮掺杂碳纳米管超晶格电子结构和光学性能的影响. 物理学报, 2015, 64(14): 147304. doi: 10.7498/aps.64.147304
    [10] 王祥, 钞润泽, 管仁国, 李元东, 刘春明. 金属熔体近壁面流动剪切模型及其对金属凝固影响的理论研究. 物理学报, 2015, 64(11): 116601. doi: 10.7498/aps.64.116601
    [11] 代显智. 基于能量转换原理的磁电层合材料低频磁电响应分析. 物理学报, 2014, 63(20): 207501. doi: 10.7498/aps.63.207501
    [12] 刘正坤, 邱克强, 陈火耀, 刘颖, 徐向东, 付绍军, 王琛, 安红海, 方智恒. 软X射线双频光栅剪切干涉法研究. 物理学报, 2013, 62(7): 070703. doi: 10.7498/aps.62.070703
    [13] 张松鹏, 张向军, 田煜, 孟永钢. 采用液晶涂层测量介质流与壁面间剪切应力的定量模型与试验研究. 物理学报, 2012, 61(23): 234702. doi: 10.7498/aps.61.234702
    [14] 王建元, 翟薇, 金克新, 陈长乐. 切向流动作用下的胞晶定向生长机理研究. 物理学报, 2011, 60(9): 098106. doi: 10.7498/aps.60.098106
    [15] 王建元, 陈长乐, 翟薇, 金克新. 切向流动对偏晶合金定向生长机理的影响. 物理学报, 2010, 59(10): 7424-7430. doi: 10.7498/aps.59.7424
    [16] 孙其诚, 张国华, 王博, 王光谦. 半柔性网络剪切模量的计算. 物理学报, 2009, 58(9): 6549-6553. doi: 10.7498/aps.58.6549
    [17] 胡建波, 俞宇颖, 戴诚达, 谭 华. 冲击加载下铝的剪切模量. 物理学报, 2005, 54(12): 5750-5754. doi: 10.7498/aps.54.5750
    [18] 华劲松, 经福谦, 谭 华, 周显明. 一种计算剪切模量温度系数的方法. 物理学报, 2005, 54(1): 246-250. doi: 10.7498/aps.54.246
    [19] 傅新宇, 董家齐, 应纯同, 刘广均. 平行速度剪切驱动湍流引起的粒子输运. 物理学报, 1997, 46(3): 474-480. doi: 10.7498/aps.46.474
    [20] 王作维, 林志方, 陶瑞宝. 电场方向对电流变液剪切应力的影响. 物理学报, 1996, 45(4): 640-646. doi: 10.7498/aps.45.640
计量
  • 文章访问数:  6813
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-21
  • 修回日期:  2018-01-16
  • 刊出日期:  2019-04-20

/

返回文章
返回