搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

部分浸没圆柱壳声固耦合计算的半解析法研究

郭文杰 李天匀 朱翔 屈凯旸

引用本文:
Citation:

部分浸没圆柱壳声固耦合计算的半解析法研究

郭文杰, 李天匀, 朱翔, 屈凯旸

Semi-analytical research on acoustic-structure coupling calculation of partially submerged cylindrical shell

Guo Wen-Jie, Li Tian-Yun, Zhu Xiang, Qu Kai-Yang
PDF
导出引用
  • 部分浸没圆柱壳-流场耦合系统的声振分析是一种典型的半空间域内声固耦合问题,其振动及声学计算目前主要依赖于数值方法求解,但无论从检验数值法还是从机理上揭示其声固耦合特性,解析或半解析方法的发展都是不可或缺的.本文提出了一种半解析方法,先将声场坐标系建立在自由液面上,采用正弦三角级数来满足自由液面上的声压释放边界条件;接着基于二维Fl;gge薄壳理论建立了以圆柱圆心为坐标原点的壳-液耦合系统的控制方程;然后再利用Galerkin法处理声固耦合界面的速度连续条件,推导得到声压幅值与壳体位移幅值之间的关系矩阵并求解该耦合系统的振动和水下声辐射.与有限元软件Comsol进行了耦合系统自由、受迫振动和水下辐射噪声计算结的对比分析,表明本文方法准确可靠.本文的研究为解析求解弹性结构与声场部分耦合的声振问题提供了新的思路.
    Vibroacoustic analysis of a partially submerged cylindrical shell-liquid coupling system is a typical acoustic-structure interaction problem in an acoustic half-space. Generally, the vibration and acoustic solutions of this problem almost depend on numerical method in previous studies. However, whether from the aspect of verifying the numerical methods or from the aspect of revealing the vibroacoustic mechanism of the acoustic-structure interaction system, the development of an analytical or semi-analytical method is indispensable. In this study, a semi-analytical method is proposed to address the vibroacoustic response of a horizontal cylindrical shell partially immersed in water The acoustic coordinate system is established on the free surface, and the sine series function is introduced to express the sound pressure to meet the pressure release boundary condition on the free surface automatically. Then based on the two-dimensional Flgge shell theory, the motion equation of the shell-liquid coupling system is established with using the center of the shell as the origin of the coordinate system. By using the Galerkin method, the velocity continuous condition on the fluid-structure interface is established. Then the relation matrix between the acoustic pressure amplitude and the shell displacement amplitude is derived after converting the sound pressure from different coordinate systems into that in the same coordinate system by using the geometry relationship of two coordinate systems. Then the vibration and sound radiation of this coupling system are predicted by solving the coupled matrix equations, and the coupled free vibration can also be addressed by solving the characteristic equation after setting the determinant of the coefficient matrix to be zero. To verify the accuracy and reliability of the present method, the coupled natural frequencies, the vibration response and the distribution of the sound pressure obtained from the present method are compared with those obtained from the finite element method, showing that they are in good agreement with each other. Then the shapes of the first four order modes for the coupled system are presented and compared with those of the system submerged in unbounded fluid field, and the couple between different modes, and the couple between the symmetric and antisymmetric modes are observed due to the effect of the free surface. The characteristics of the root mean square velocity of the shell with different immersed depths are discussed, which reveals that the peaks of response curves shift to the lower frequencies with increasing immersed depth. The characteristics of far field sound pressure directivity are presented and explained by the image method in detail. This study provides a novel method to analytically predict the vibroacoustic response of an elastic structure partially coupling with the fluid field when bounded in a sound half space.
      通信作者: 李天匀, ltyz801@hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51579109,51479079,51379083)和中央高校基本科研业务费(批准号:2016YXZD010)资助的课题.
      Corresponding author: Li Tian-Yun, ltyz801@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51579109, 51479079, 51379083) and the Fundamental Research Funds for the Central Universities of China (Grant No. 2016YXZD010).
    [1]

    Williams W, Parke N G, Moran D A, Sherman C H 1964 J. Acount. Soc. Am. 36 2316

    [2]

    Harari A, Sandman B E 1976 J. Acoust. Soc. Am. 60 117

    [3]

    Fuller C R 1988 J. Sound Vib. 122 479

    [4]

    Pan A, Fan J, Wang B, Chen Z G, Zheng G Y 2014 Acta Phys. Sin. 63 214301 (in Chinese)[潘安, 范军, 王斌, 陈志刚, 郑国垠 2014 物理学报 63 214301]

    [5]

    Liu P, Liu S W, Li S 2013 Ship Sci. Technol. 36 36 (in Chinese)[刘佩, 刘书文, 黎胜 2013 舰船科学技术 36 36]

    [6]

    Huang H 1981 Wave Motion 3 269

    [7]

    Hasheminejad S M, Azarpeyvand M 2005 J. Appl. Math. Mech. 85 66

    [8]

    Bai Z G, Wu W W, Zuo C K, Zhang F, Xiong C X 2014 J. Ship Mech. 18 178 (in Chinese)[白振国, 吴文伟, 左成魁, 张峰, 熊晨熙 2014 船舶力学 18 178]

    [9]

    Guo W J, Li T Y, Zhu X, Miao Y Y, Zhang G J 2017 J. Sound Vib. 393 338

    [10]

    Guo W J, Li T Y, Zhu X, Zhang S 2017 Chin. J. Ship Res. 12 62 (in Chinese)[郭文杰, 李天匀, 朱翔, 张帅 2017 中国舰船研究 12 62]

    [11]

    Amabili M 1996 J. Sound Vib. 191 757

    [12]

    Amabili M 1997 J. Vib. Acoust. 119 476

    [13]

    Ye W B, Li T Y, Zhu X 2012 Appl. Mech. Mater. 170 2303

    [14]

    Selmane A, Lakis A A 1997 J. Sound Vib. 5 111

    [15]

    Ergin A, Temarel P 2002 J. Sound Vib. 254 951

    [16]

    Krishna B V, Ganesan N 2006 J. Sound Vib. 291 1221

    [17]

    Hidalgo J A, Gama A L, Moreire R M 2017 J. Sound Vib. 408 31

    [18]

    Escaler X, Torre O D, Goggins J 2017 J. Fluid Struct. 69 252

    [19]

    Li T Y, Wang P, Zhu X, Yang J, Ye W B 2017 J. Vib. Acoust. 139 041002

    [20]

    Li H L, Wu C J, Huang X Q 2003 Appl. Acoust. 64 495

    [21]

    Li T Y, Wang L, Guo W J, Yang G D, Zhu Xiang 2016 Chin. J. Ship Res. 11 106 (in Chinese)[李天匀, 王露, 郭文杰, 杨国栋, 朱翔 2016 中国舰船研究 11 106]

    [22]

    Zhu X, Ye W B, Li T Y, Chen C 2013 Ocean Eng. 58 22

  • [1]

    Williams W, Parke N G, Moran D A, Sherman C H 1964 J. Acount. Soc. Am. 36 2316

    [2]

    Harari A, Sandman B E 1976 J. Acoust. Soc. Am. 60 117

    [3]

    Fuller C R 1988 J. Sound Vib. 122 479

    [4]

    Pan A, Fan J, Wang B, Chen Z G, Zheng G Y 2014 Acta Phys. Sin. 63 214301 (in Chinese)[潘安, 范军, 王斌, 陈志刚, 郑国垠 2014 物理学报 63 214301]

    [5]

    Liu P, Liu S W, Li S 2013 Ship Sci. Technol. 36 36 (in Chinese)[刘佩, 刘书文, 黎胜 2013 舰船科学技术 36 36]

    [6]

    Huang H 1981 Wave Motion 3 269

    [7]

    Hasheminejad S M, Azarpeyvand M 2005 J. Appl. Math. Mech. 85 66

    [8]

    Bai Z G, Wu W W, Zuo C K, Zhang F, Xiong C X 2014 J. Ship Mech. 18 178 (in Chinese)[白振国, 吴文伟, 左成魁, 张峰, 熊晨熙 2014 船舶力学 18 178]

    [9]

    Guo W J, Li T Y, Zhu X, Miao Y Y, Zhang G J 2017 J. Sound Vib. 393 338

    [10]

    Guo W J, Li T Y, Zhu X, Zhang S 2017 Chin. J. Ship Res. 12 62 (in Chinese)[郭文杰, 李天匀, 朱翔, 张帅 2017 中国舰船研究 12 62]

    [11]

    Amabili M 1996 J. Sound Vib. 191 757

    [12]

    Amabili M 1997 J. Vib. Acoust. 119 476

    [13]

    Ye W B, Li T Y, Zhu X 2012 Appl. Mech. Mater. 170 2303

    [14]

    Selmane A, Lakis A A 1997 J. Sound Vib. 5 111

    [15]

    Ergin A, Temarel P 2002 J. Sound Vib. 254 951

    [16]

    Krishna B V, Ganesan N 2006 J. Sound Vib. 291 1221

    [17]

    Hidalgo J A, Gama A L, Moreire R M 2017 J. Sound Vib. 408 31

    [18]

    Escaler X, Torre O D, Goggins J 2017 J. Fluid Struct. 69 252

    [19]

    Li T Y, Wang P, Zhu X, Yang J, Ye W B 2017 J. Vib. Acoust. 139 041002

    [20]

    Li H L, Wu C J, Huang X Q 2003 Appl. Acoust. 64 495

    [21]

    Li T Y, Wang L, Guo W J, Yang G D, Zhu Xiang 2016 Chin. J. Ship Res. 11 106 (in Chinese)[李天匀, 王露, 郭文杰, 杨国栋, 朱翔 2016 中国舰船研究 11 106]

    [22]

    Zhu X, Ye W B, Li T Y, Chen C 2013 Ocean Eng. 58 22

  • [1] 李玉杰, 黄军杰, 肖旭斌. 液滴撞击圆柱内表面的数值研究. 物理学报, 2018, 67(18): 184701. doi: 10.7498/aps.67.20180364
    [2] 商德江, 钱治文, 何元安, 肖妍. 基于联合波叠加法的浅海信道下圆柱壳声辐射研究. 物理学报, 2018, 67(8): 084301. doi: 10.7498/aps.67.20171963
    [3] 杨德森, 张睿, 时胜国. 内部体积源作用下的圆柱壳内外声场特性. 物理学报, 2018, 67(24): 244301. doi: 10.7498/aps.67.20181716
    [4] 邹诗莹, 席伟成, 彭妙娟, 程玉民. 运用改进的无单元Galerkin方法分析机场道面断裂力学问题. 物理学报, 2017, 66(12): 120204. doi: 10.7498/aps.66.120204
    [5] 路中磊, 魏英杰, 王聪, 孙钊. 基于高速摄像实验的开放腔体圆柱壳入水空泡流动研究. 物理学报, 2016, 65(1): 014704. doi: 10.7498/aps.65.014704
    [6] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式. 物理学报, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [7] 潘安, 范军, 王斌, 陈志刚, 郑国垠. 双层周期加肋有限长圆柱壳声散射精细特征研究. 物理学报, 2014, 63(21): 214301. doi: 10.7498/aps.63.214301
    [8] 安保林, 林鸿, 刘强, 段远源. 基于圆柱定程干涉法测量气体黏度的探索. 物理学报, 2013, 62(17): 175101. doi: 10.7498/aps.62.175101
    [9] 明付仁, 张阿漫, 姚熊亮. 弹性壳结构静力与动力分析的光滑粒子法. 物理学报, 2013, 62(11): 110203. doi: 10.7498/aps.62.110203
    [10] 潘安, 范军, 卓琳凯. 准周期加隔板有限长圆柱壳声散射. 物理学报, 2013, 62(2): 024301. doi: 10.7498/aps.62.024301
    [11] 李帅, 张阿漫, 王诗平. 气泡引起的皇冠型水冢实验与数值研究. 物理学报, 2013, 62(19): 194703. doi: 10.7498/aps.62.194703
    [12] 倪宝玉, 李帅, 张阿漫. 气泡在自由液面破碎后的射流断裂现象研究. 物理学报, 2013, 62(12): 124704. doi: 10.7498/aps.62.124704
    [13] 潘安, 范军, 卓琳凯. 周期性加隔板有限长圆柱壳声散射. 物理学报, 2012, 61(21): 214301. doi: 10.7498/aps.61.214301
    [14] 杨秀丽, 戴保东, 栗振锋. 弹性力学的复变量无网格局部 Petrov-Galerkin 法. 物理学报, 2012, 61(5): 050204. doi: 10.7498/aps.61.050204
    [15] 郑保敬, 戴保东. 位势问题改进的无网格局部Petrov-Galerkin法. 物理学报, 2010, 59(8): 5182-5189. doi: 10.7498/aps.59.5182
    [16] 那仁满都拉, 韩元春. 非均匀圆柱壳中非线性波传播模型的同伦分析解法. 物理学报, 2010, 59(5): 2942-2947. doi: 10.7498/aps.59.2942
    [17] 许晟瑞, 张进城, 李志明, 周小伟, 许志豪, 赵广才, 朱庆伟, 张金凤, 毛维, 郝跃. 金属有机物化学气相沉积生长的a(1120)面GaN三角坑缺陷的消除研究. 物理学报, 2009, 58(8): 5705-5708. doi: 10.7498/aps.58.5705
    [18] 代少玉, 吴振森. 时域小波Galerkin法在有耗地面与任意目标复合散射中的应用. 物理学报, 2008, 57(12): 7635-7640. doi: 10.7498/aps.57.7635
    [19] 贺 锋, 郭启波, 刘 辽. 用三角函数法获得非线性Boussinesq方程的广义孤子解. 物理学报, 2007, 56(8): 4326-4330. doi: 10.7498/aps.56.4326
    [20] 检测超声组. 液面法超声全息成象技术. 物理学报, 1975, 24(1): 12-20. doi: 10.7498/aps.24.12
计量
  • 文章访问数:  7193
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-18
  • 修回日期:  2018-02-07
  • 刊出日期:  2019-04-20

/

返回文章
返回