搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴撞击圆柱内表面的数值研究

李玉杰 黄军杰 肖旭斌

引用本文:
Citation:

液滴撞击圆柱内表面的数值研究

李玉杰, 黄军杰, 肖旭斌

Numerical study of droplet impact on the inner surface of a cylinder

Li Yu-Jie, Huang Jun-Jie, Xiao Xu-Bin
PDF
导出引用
  • 针对液滴撞击圆柱内表面的过程,利用基于相场的格子Boltzmann方法模拟液滴以不同初速度、从不同初始高度、撞击不同大小的圆柱内表面时液滴的形态变化,分析了液滴自身物性(如密度和黏性等)和圆柱内表面润湿性等因素对撞击现象的具体影响.研究发现:撞击韦伯数、密度比及动力黏性比、圆柱半径等对液滴撞击后沿圆柱内表面的铺展均有一定影响,较高的韦伯数下液滴可能会发生分裂;液滴初始高度对大密度比和动力黏性比的撞击影响较小;液滴反弹现象可能出现在接触角较大时;重力作用会抑制撞击后液滴的振荡.
    Droplet impact on a solid surface is ubiquitous in daily life and various engineering fields such as ink-jet printing and surface coating. Most of existing studies focused on the droplet impact on flat or convex surface whereas the droplet impact on a concave surface has been less investigated. The purpose of this paper is to investigate the dynamic process of droplet impact on the inner surface of a cylinder numerically by using the phase-field-based lattice Boltzmann method. This method combines the finite-difference solution of the Cahn-Hilliard equation to capture the interface dynamics and the lattice Boltzmann method for the hydrodynamics of the flow. Besides, a recently proposed method is employed to deal with the wetting boundary condition on the curved wall. The method is first verified through the study of the equilibrium contact angle of a droplet on the inner surface of a cylinder and the droplet impact on a thin film, for which good agreement is obtained with theoretical results or other numerical solutions in the literature. Then, different droplet impact velocity, initial height of the droplet, surface wettability and radius of the cylinder are considered for the main problem and their effects on the evolution of the droplet shape are investigated. The physical properties of the droplet including the density and viscosity are also varied to assess their effects on the impact outcome. It is found that the impact Weber number, the liquid/gas density and dynamic viscosity ratios, the wettability of the inner surface of the cylinder, and the radius of the cylinder may have significant effects on the deformation and spreading of the droplet. At low Weber numbers, when the density and dynamic viscosity ratios are sufficiently high, their variations have little effect on the droplet impact process. At high Weber numbers, changes of these two ratios have more noticeable effects. When the Weber number is high enough, droplet splashing appears. When the density and dynamic viscosity ratios are high, the initial height of the droplet only has a minor effect on the impact results. The increment of the cylinder radius not only increases the maximum spreading radius but also enlarges the oscillation period of the droplet after its impact. Rebound of the droplet may be observed when the contact angle of the inner surface of the cylinder is large enough. Besides, the gravity force is found to suppress the oscillation of the droplet on the cylinder's inner surface. This work may broaden our understanding of the droplet impact on curved surfaces.
      通信作者: 黄军杰, jjhuang@cqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11202250)资助的课题.
      Corresponding author: Huang Jun-Jie, jjhuang@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11202250).
    [1]

    Guo Y X, Liu Y Z, Dong W, Lei G L, Zhu J J 2016 Acta Aerodyn. Sin. 34 573 (in Chinese) [郭宇翔, 刘荫泽, 董威, 雷桂林, 朱剑鋆 2016 空气动力学报 34 573]

    [2]

    Liu Q Z, Kou Z M, Han Z N, Gao G J 2013 Acta Phys. Sin. 62 234701 (in Chinese) [刘邱祖, 寇子明, 韩振南, 高贵军 2013 物理学报 62 234701]

    [3]

    Han F H, Zhang C M, Wang Y X 1995 J. Beijing Univ. Aeron. Astron. 21 16 (in Chinese) [韩凤华, 张朝民, 王跃欣 1995 北京航空航天大学学报 21 16]

    [4]

    Li W Z, Zhu W Y, Quan S L, Jiang Y X 2008 J. Therm. Sci. Technol. 7 155 (in Chinese) [李维仲, 朱卫英, 权生林, 姜远新 2008 热科学与技术 7 155]

    [5]

    Fan Y 2016 M. S. Thesis (Chongqing: University of Chongqing) (in Chinese) [范瑶 2016 硕士学位论文 (重庆: 重庆大学)]

    [6]

    Wang Y E, Zhou J H, Qin Y L, Li P L, Yang M M, Han Q, Wang Y B, Wei S M 2012 J. Vib. Shock 31 51 (in Chinese) [汪焰恩, 周金华, 秦琰磊, 李鹏林, 杨明明, 韩琴, 王月波, 魏生民 2012 振动与冲击 31 51]

    [7]

    Li Y P, Wang H R 2009 J. Xi'an Jiaotong Univ. 43 21 (in Chinese) [李彦鹏, 王焕然 2009 西安交通大学学报 43 21]

    [8]

    Huang J J, Wu J, Huang H 2018 Eur. Phys. J. E 41 17

    [9]

    Shen S Q, Bi F F, Guo Y L 2012 Int. J. Heat Mass Tran. 55 6938

    [10]

    Song Y C, Ning Z, Sun C H, L M, Yan K, Fu J 2013 T. CSICE 31 531 (in Chinese) [宋云超, 宁智, 孙春华, 吕明, 阎凯, 付娟 2013 内燃机学报 31 531]

    [11]

    Zheng Z W, Li D S, Qiu X Q, Zhu X L, Cui Y J 2015 CIESC J. 66 1667 (in Chinese) [郑志伟, 李大树, 仇性启, 朱晓丽, 崔运静 2015 化工学报 66 1667]

    [12]

    Ling J 2016 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese) [凌俊 2016 硕士学位论文 (大连: 大连理工大学)]

    [13]

    Huang J J, Huang H B, Shu C, Chew Y T, Wang S L 2013 J. Phys. A: Math. Theor. 46 55501

    [14]

    Lee T 2009 Compu. Math. Appl. 58 987

    [15]

    Lee T, Liu L 2010 J. Comput. Phys. 229 8045

    [16]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546

    [17]

    Lee H G, Kim J 2011 Comput. Fluids 44 178

    [18]

    Ding H, Spelt P D M 2007 Phys. Rev. E 75 046708

    [19]

    Huang J J, Huang H B, Wang X Z 2015 Int. J. Numer. Meth. Fluids 77 123

    [20]

    Gao Y J, Jiang H Q, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702 (in Chinese) [高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 物理学报 66 024702]

    [21]

    Shen S Q, Yu H, Guo Y L, Liang G T 2013 J. Therm. Sci. Technol. 12 20 (in Chinese) [沈胜强, 于欢, 郭亚丽, 梁刚涛 2013 热科学与技术 12 20]

    [22]

    Yue P T, Zhou C F, Feng J J 2010 J. Fluid Mech. 645 279

    [23]

    Wen B H, Zhang C Y, Fang H P 2017 Sci. Sin.: Phys. Mech. Astron. 47 070012 (in Chinese) [闻炳海, 张超英, 方海平 2017 中国科学: 物理学 力学 天文学 47 070012]

    [24]

    Shao J Y, Shu C, Huang H B, Chew Y T 2014 Phys. Rev. E 89 033309

    [25]

    Prosperetti A 1981 Phys. Fluids 24 1217

    [26]

    Liu Y, Tan P, Xu L 2015 PNAS 112 3280

    [27]

    Yue P, Zhou C, Feng J J 2007 J. Comput. Phys. 223 1

  • [1]

    Guo Y X, Liu Y Z, Dong W, Lei G L, Zhu J J 2016 Acta Aerodyn. Sin. 34 573 (in Chinese) [郭宇翔, 刘荫泽, 董威, 雷桂林, 朱剑鋆 2016 空气动力学报 34 573]

    [2]

    Liu Q Z, Kou Z M, Han Z N, Gao G J 2013 Acta Phys. Sin. 62 234701 (in Chinese) [刘邱祖, 寇子明, 韩振南, 高贵军 2013 物理学报 62 234701]

    [3]

    Han F H, Zhang C M, Wang Y X 1995 J. Beijing Univ. Aeron. Astron. 21 16 (in Chinese) [韩凤华, 张朝民, 王跃欣 1995 北京航空航天大学学报 21 16]

    [4]

    Li W Z, Zhu W Y, Quan S L, Jiang Y X 2008 J. Therm. Sci. Technol. 7 155 (in Chinese) [李维仲, 朱卫英, 权生林, 姜远新 2008 热科学与技术 7 155]

    [5]

    Fan Y 2016 M. S. Thesis (Chongqing: University of Chongqing) (in Chinese) [范瑶 2016 硕士学位论文 (重庆: 重庆大学)]

    [6]

    Wang Y E, Zhou J H, Qin Y L, Li P L, Yang M M, Han Q, Wang Y B, Wei S M 2012 J. Vib. Shock 31 51 (in Chinese) [汪焰恩, 周金华, 秦琰磊, 李鹏林, 杨明明, 韩琴, 王月波, 魏生民 2012 振动与冲击 31 51]

    [7]

    Li Y P, Wang H R 2009 J. Xi'an Jiaotong Univ. 43 21 (in Chinese) [李彦鹏, 王焕然 2009 西安交通大学学报 43 21]

    [8]

    Huang J J, Wu J, Huang H 2018 Eur. Phys. J. E 41 17

    [9]

    Shen S Q, Bi F F, Guo Y L 2012 Int. J. Heat Mass Tran. 55 6938

    [10]

    Song Y C, Ning Z, Sun C H, L M, Yan K, Fu J 2013 T. CSICE 31 531 (in Chinese) [宋云超, 宁智, 孙春华, 吕明, 阎凯, 付娟 2013 内燃机学报 31 531]

    [11]

    Zheng Z W, Li D S, Qiu X Q, Zhu X L, Cui Y J 2015 CIESC J. 66 1667 (in Chinese) [郑志伟, 李大树, 仇性启, 朱晓丽, 崔运静 2015 化工学报 66 1667]

    [12]

    Ling J 2016 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese) [凌俊 2016 硕士学位论文 (大连: 大连理工大学)]

    [13]

    Huang J J, Huang H B, Shu C, Chew Y T, Wang S L 2013 J. Phys. A: Math. Theor. 46 55501

    [14]

    Lee T 2009 Compu. Math. Appl. 58 987

    [15]

    Lee T, Liu L 2010 J. Comput. Phys. 229 8045

    [16]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546

    [17]

    Lee H G, Kim J 2011 Comput. Fluids 44 178

    [18]

    Ding H, Spelt P D M 2007 Phys. Rev. E 75 046708

    [19]

    Huang J J, Huang H B, Wang X Z 2015 Int. J. Numer. Meth. Fluids 77 123

    [20]

    Gao Y J, Jiang H Q, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702 (in Chinese) [高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 物理学报 66 024702]

    [21]

    Shen S Q, Yu H, Guo Y L, Liang G T 2013 J. Therm. Sci. Technol. 12 20 (in Chinese) [沈胜强, 于欢, 郭亚丽, 梁刚涛 2013 热科学与技术 12 20]

    [22]

    Yue P T, Zhou C F, Feng J J 2010 J. Fluid Mech. 645 279

    [23]

    Wen B H, Zhang C Y, Fang H P 2017 Sci. Sin.: Phys. Mech. Astron. 47 070012 (in Chinese) [闻炳海, 张超英, 方海平 2017 中国科学: 物理学 力学 天文学 47 070012]

    [24]

    Shao J Y, Shu C, Huang H B, Chew Y T 2014 Phys. Rev. E 89 033309

    [25]

    Prosperetti A 1981 Phys. Fluids 24 1217

    [26]

    Liu Y, Tan P, Xu L 2015 PNAS 112 3280

    [27]

    Yue P, Zhou C, Feng J J 2007 J. Comput. Phys. 223 1

  • [1] 赖瑶瑶, 陈鑫梦, 柴振华, 施保昌. 基于格子Boltzmann方法的钉扎螺旋波反馈控制. 物理学报, 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] 程大钊, 刘彩艳, 张超然, 屈佳辉, 张静. 中子辐照奥氏体不锈钢晶内/晶间孔隙形貌演化的相场模拟. 物理学报, 2024, 73(22): 224601. doi: 10.7498/aps.73.20241353
    [3] 刘程, 梁宏. 三相流体的轴对称格子 Boltzmann 模型及其在 Rayleigh-Plateau 不稳定性的应用. 物理学报, 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [4] 李腾, 邱文婷, 龚深. 基于相场方法的多孔合金马氏体相变模拟. 物理学报, 2023, 72(14): 148102. doi: 10.7498/aps.72.20230212
    [5] 张晓林, 黄军杰. 楔形体上复合液滴润湿铺展行为的格子Boltzmann方法研究. 物理学报, 2023, 72(2): 024701. doi: 10.7498/aps.72.20221472
    [6] 梁德山, 黄厚兵, 赵亚楠, 柳祝红, 王浩宇, 马星桥. 拓扑荷在圆盘状向列相液晶薄膜中的尺寸效应. 物理学报, 2021, 70(4): 044202. doi: 10.7498/aps.70.20201623
    [7] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [8] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型. 物理学报, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [9] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟. 物理学报, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [10] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [11] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究. 物理学报, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [12] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [13] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [14] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [15] 苏进, 欧阳洁, 王晓东. 耦合不可压流场输运方程的格子Boltzmann方法研究. 物理学报, 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [16] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用. 物理学报, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [17] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [18] 陈云, 康秀红, 肖纳敏, 郑成武, 李殿中. 多晶材料晶粒生长粗化过程的相场方法模拟. 物理学报, 2009, 58(13): 124-S131. doi: 10.7498/aps.58.124
    [19] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [20] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程. 物理学报, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
计量
  • 文章访问数:  6958
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-28
  • 修回日期:  2018-05-07
  • 刊出日期:  2019-09-20

/

返回文章
返回