搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于格子Boltzmann方法的钉扎螺旋波反馈控制

赖瑶瑶 陈鑫梦 柴振华 施保昌

引用本文:
Citation:

基于格子Boltzmann方法的钉扎螺旋波反馈控制

赖瑶瑶, 陈鑫梦, 柴振华, 施保昌

Lattice Boltzmann method based feedback control approach for pinned spiral waves

Lai Yao-Yao, Chen Xin-Meng, Chai Zhen-Hua, Shi Bao-Chang
PDF
HTML
导出引用
  • 螺旋波是心室跳动过速和纤维性颤动的根源, 钉扎螺旋波相对于自由螺旋波来说更难消除. 本文采用格子Boltzmann方法求解, 以FitzHugh-Nagumo模型为对象, 研究了使用反馈控制法消除钉扎螺旋波. 数值结果表明, 无论钉扎螺旋波钉在圆形障碍物还是矩形障碍物上, 反馈控制法对其都具有很好的控制作用. 此外, 通过数值模拟系统研究了可激性系数、反馈控制信号幅度、记录反馈信号时间和障碍物的大小对钉扎螺旋波的控制情况. 研究表明, 钉扎螺旋波消除有三种情况. 首先, 反馈控制信号幅度和可激性系数与钉扎螺旋波消除所需的时间有关, 反馈控制信号幅度越大或可激性系数越小, 钉扎螺旋波消除越快. 其次, 障碍物大小和可激性系数影响着能成功消除钉扎螺旋波下记录反馈信号时间与加入反馈控制时间之间对应的时间间隔. 最后, 在保持加入反馈控制时间不变的情况下, 记录反馈信号时间影响着能成功消除钉扎螺旋波所需的最小反馈控制信号幅度.
    Spiral waves are common in nature and have received a lot of attention. Spiral wave is the source of ventricular tachycardia and fibrillation, and pinned spiral wave is less likely to be eliminated than free spiral wave. Therefore, it is important to find an effective method to control the pinned spiral wave. In this work, we investigate the feedback control approach to eliminating pinned spiral wave based on the lattice Boltzmann method, by using the FitzHugh-Nagumo model as an object. The numerical results show that the feedback control method has a good control effect on the pinned spiral wave no matter whether it is pinned on a circular or rectangular obstacle. In addition, the excitability coefficient, amplitude of feedback control, recording feedback signal time and obstacle size are systematically investigated by numerical simulation. The study shows that there are three cases of pinned spiral wave cancellation. Firstly, the amplitude of feedback control and excitability coefficient are related to the time required to eliminate the pinned spiral wave, and the larger the amplitude of feedback control signal or the smaller the excitability coefficient, the faster the cancellation of the pinned spiral waveis. Secondly, the size of the obstacle and the excitability coefficient affect the time interval between the time of recording the feedback signal and the time of adding the feedback control that can successfully control the pinned spiral wave. Finally, the recorded feedback signal time affects the minimum amplitude of feedback control required to successfully eliminate the pinned spiral wave, while the added feedback control time is constant. According to the discussion in this paper, it can be seen that the feedback control method has a good control effect on the pinned spiral wave.
      通信作者: 施保昌, shibc@hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12072127, 51836003)资助的课题.
      Corresponding author: Shi Bao-Chang, shibc@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12072127, 51836003).
    [1]

    Winfree A T 1972 Science 175 634Google Scholar

    [2]

    Rotermund H H, Jakubith S, Von Oertzen A, Ertl G 1991 Phys. Rev. Lett. 66 3083Google Scholar

    [3]

    Witkowski F X, Leon L J, Penkoske P A, Giles W R, Spano M L, Ditto W L, Winfree A T 1998 Nature 392 78Google Scholar

    [4]

    Zakin A N, Zhabotinsky A M 1970 Nature 225 535Google Scholar

    [5]

    Valderrábano M, Kim Y, Yashima M, Wu T, Karagueuzian H S, Chen P S 2000 J. Am. Coll. Cardiol. 36 2000Google Scholar

    [6]

    Zou X, Levine H, Kessler D A 1993 Phys. Rev. E 47 R800Google Scholar

    [7]

    Steinbock O, Müller S C 1993 Phys. Rev. E 47 1506

    [8]

    Fu Y Q, Zhang H, Cao Z 2005 Phys. Rev. E 72 046206Google Scholar

    [9]

    Ponboonjaroenchai B, Srithamma P, Kumchaiseemak N, et. al. 2017 J. Phys. Conf. Ser. 901 012027Google Scholar

    [10]

    Chen J X, Peng L, Ma J 2014 EPL 107 38001Google Scholar

    [11]

    Yuan G Y, Gao Z, Yan S 2021 Nonlinear Dyn. 104 2583Google Scholar

    [12]

    Yuan G Y, Yang S P, Wang G R, Chen S G 2008 Chin. Phys. B 17 1674

    [13]

    Hou Z M, Shi B C, Chai Z H 2017 Comput. Math. Appl. 74 2330Google Scholar

    [14]

    Chai Z H, Shi B C 2020 Phys. Rev. E 102 023306Google Scholar

    [15]

    Shi B C, Guo Z L 2009 Phys. Rev. E 79 016701Google Scholar

    [16]

    Higuera F J, Succi S 1989 EPL 8 517Google Scholar

    [17]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500Google Scholar

    [18]

    FitzHugh R 1961 Biophys. J 1 445Google Scholar

    [19]

    Courtemanche M, Skaggs W, Winfree A T 1990 Phys. D 41 173Google Scholar

    [20]

    Liang H, Wu H 2008 J. Am. Stat. Assoc. 103 1570Google Scholar

    [21]

    Concha A, Garrido R 2015 J. Comput. Nonlinear Dyn. 10 021023Google Scholar

    [22]

    何雅玲, 王勇, 李庆 2009 格子Boltzmann 方法的理论及应用(北京: 科学出版社) 第123—126页

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) pp123–126

  • 图 1  (a) $ t = 15 $时, $ u = 0.5 $的等值线情况; (b) $ t = 15 $ 时, $ y = 15 $处u值情况

    Fig. 1.  (a) Contour case for $ u = 0.5 $ at $ t = 15 $; (b) value of u for $ y = 15 $ at $ t = 15 $

    图 2  与文献[11]对比, 钉扎螺旋波的周期随圆形障碍物半径的变化

    Fig. 2.  Compared with Ref. [11], the period of the pinned spiral wave varies with the radius of the circular obstacle

    图 3  在点(4, 20)处uv的值 (a) u与时间步t 的关系; (b) uv的相图

    Fig. 3.  Values of u and v at the point (4, 20): (a) Relationship between u and the time step t; (b) phase diagram of u and v

    图 4  利用反馈法控制圆形障碍物下钉扎螺旋波的情况

    Fig. 4.  Suppression of a pinned spiral wave under a circular obstacle by feedback control approach

    图 5  $ \varepsilon = 0.004,\; R = 20,\; k_{{\mathrm{fb}}} = 0.5 $下反馈法控制钉扎螺旋波过程中$ u_{{\mathrm{all}}} $的变化值

    Fig. 5.  Change of $ u_{{\mathrm{all}}} $ of unpinning spiral waves with $ \varepsilon = 0.004,\; R = 20,\; k_{{\mathrm{fb}}} = 0.5 $.

    图 6  利用反馈法控制正方形障碍物下钉扎螺旋波的情况

    Fig. 6.  Suppression of a pinned spiral wave under a square obstacle by feedback control approach

    图 7  不同$ k_{{\mathrm{fb}}} $下消除钉扎螺旋波的时间步

    Fig. 7.  Time step of unpinning spiral wave with different $ k_{{\mathrm{fb}}} $

    图 8  (a)钉扎螺旋波的周期随可激性系数$ \varepsilon $的变化; (b)记录反馈信号时间$ t_0 $随可激性系数$ \varepsilon $的变化; (c)$ k_{{\mathrm{fbmin}}} $随可激性系数$ \varepsilon $的变化; (d)钉扎螺旋波的控制时间t随可激性系数$ \varepsilon $的变化

    Fig. 8.  (a) Variation of the period of the pinned spiral wave with $ \varepsilon $; (b) variation of the time of recording the feedback signal with $ \varepsilon $; (c) variation of $ k_{{\mathrm{fbmin}}} $ with $ \varepsilon $; (d) variation of the time required to eliminate the pinned spiral wave with $ \varepsilon $

    图 9  不同$ \varepsilon $下, 能够成功控制钉扎螺旋波的记录反馈信号时间$ t_0 $与加入反馈控制时间$ t_1 $之间时间间隔对应的范围

    Fig. 9.  Corresponding range of the time interval between the recording feedback signal time $ t_0 $ and the adding feedback control time $ t_1 $ with different $ \varepsilon $

    图 10  在不同的$ t_0 $下, 能成功控制钉扎螺旋波所需的$ k_{{\mathrm{fbmin}}} $的变化情况

    Fig. 10.  Change of $ k_{{\mathrm{fbmin}}} $ of unpinning spiral wave successfully with different $ t_0 $

    图 11  不同R下, 能够成功控制钉扎螺旋波的记录反馈信号时间$ t_0 $与加入反馈控制时间$ t_1 $之间时间间隔对应的范围

    Fig. 11.  Corresponding range of the time interval between the recording feedback signal time $ t_0 $ and the adding feedback control time $ t_1 $ with different R

    表 1  不同半径下钉扎螺旋波的波长及相对误差(1200×1200网格和1600×1600网格下)

    Table 1.  Wavelengths and relative errors of pinned spiral waves at different radius (under 1200×1200 grids and 1600×1600 grids).

    半径 3 4 5 6 7 8 9 10
    1200×1200网格下的波长 5.031 5.552 6.055 6.575 7.602 8.275 8.871 9.451
    1600×1600网格下的波长 5.041 5.582 6.071 6.602 7.633 8.345 8.912 9.502
    相对误差 0.0020 0.0054 0.0026 0.0041 0.0041 0.0081 0.0046 0.0047
    下载: 导出CSV
  • [1]

    Winfree A T 1972 Science 175 634Google Scholar

    [2]

    Rotermund H H, Jakubith S, Von Oertzen A, Ertl G 1991 Phys. Rev. Lett. 66 3083Google Scholar

    [3]

    Witkowski F X, Leon L J, Penkoske P A, Giles W R, Spano M L, Ditto W L, Winfree A T 1998 Nature 392 78Google Scholar

    [4]

    Zakin A N, Zhabotinsky A M 1970 Nature 225 535Google Scholar

    [5]

    Valderrábano M, Kim Y, Yashima M, Wu T, Karagueuzian H S, Chen P S 2000 J. Am. Coll. Cardiol. 36 2000Google Scholar

    [6]

    Zou X, Levine H, Kessler D A 1993 Phys. Rev. E 47 R800Google Scholar

    [7]

    Steinbock O, Müller S C 1993 Phys. Rev. E 47 1506

    [8]

    Fu Y Q, Zhang H, Cao Z 2005 Phys. Rev. E 72 046206Google Scholar

    [9]

    Ponboonjaroenchai B, Srithamma P, Kumchaiseemak N, et. al. 2017 J. Phys. Conf. Ser. 901 012027Google Scholar

    [10]

    Chen J X, Peng L, Ma J 2014 EPL 107 38001Google Scholar

    [11]

    Yuan G Y, Gao Z, Yan S 2021 Nonlinear Dyn. 104 2583Google Scholar

    [12]

    Yuan G Y, Yang S P, Wang G R, Chen S G 2008 Chin. Phys. B 17 1674

    [13]

    Hou Z M, Shi B C, Chai Z H 2017 Comput. Math. Appl. 74 2330Google Scholar

    [14]

    Chai Z H, Shi B C 2020 Phys. Rev. E 102 023306Google Scholar

    [15]

    Shi B C, Guo Z L 2009 Phys. Rev. E 79 016701Google Scholar

    [16]

    Higuera F J, Succi S 1989 EPL 8 517Google Scholar

    [17]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500Google Scholar

    [18]

    FitzHugh R 1961 Biophys. J 1 445Google Scholar

    [19]

    Courtemanche M, Skaggs W, Winfree A T 1990 Phys. D 41 173Google Scholar

    [20]

    Liang H, Wu H 2008 J. Am. Stat. Assoc. 103 1570Google Scholar

    [21]

    Concha A, Garrido R 2015 J. Comput. Nonlinear Dyn. 10 021023Google Scholar

    [22]

    何雅玲, 王勇, 李庆 2009 格子Boltzmann 方法的理论及应用(北京: 科学出版社) 第123—126页

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) pp123–126

  • [1] 刘程, 梁宏. 三相流体的轴对称格子 Boltzmann 模型及其在 Rayleigh-Plateau 不稳定性的应用. 物理学报, 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [2] 胡嘉懿, 张文欢, 柴振华, 施保昌, 汪一航. 三维不可压缩流的12速多松弛格子Boltzmann模型. 物理学报, 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
    [3] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型. 物理学报, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [4] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力. 物理学报, 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [5] 王佐, 张家忠, 王恒. 非正交多松弛系数轴对称热格子Boltzmann方法. 物理学报, 2017, 66(4): 044701. doi: 10.7498/aps.66.044701
    [6] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [7] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [8] 刘邱祖, 寇子明, 贾月梅, 吴娟, 韩振南, 张倩倩. 改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟. 物理学报, 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
    [9] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟. 物理学报, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [10] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究. 物理学报, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [11] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [12] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [13] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流. 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [14] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [15] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟. 物理学报, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [16] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用. 物理学报, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [17] 刘勇, 谢勇. 分数阶FitzHugh-Nagumo模型神经元的动力学特性及其同步. 物理学报, 2010, 59(3): 2147-2155. doi: 10.7498/aps.59.2147
    [18] 马 军, 靳伍银, 易 鸣, 李延龙. 时变反应扩散系统中螺旋波和湍流的控制. 物理学报, 2008, 57(5): 2832-2841. doi: 10.7498/aps.57.2832
    [19] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [20] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程. 物理学报, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
计量
  • 文章访问数:  859
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-22
  • 修回日期:  2023-10-20
  • 上网日期:  2023-12-05
  • 刊出日期:  2024-02-20

/

返回文章
返回