搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三相流体的轴对称格子 Boltzmann 模型及其在 Rayleigh-Plateau 不稳定性的应用

刘程 梁宏

引用本文:
Citation:

三相流体的轴对称格子 Boltzmann 模型及其在 Rayleigh-Plateau 不稳定性的应用

刘程, 梁宏

Axisymmetric lattice Boltzmann model for three-phase fluids and its application to the Rayleigh-Plateau instability

Liu Cheng, Liang Hong
PDF
HTML
导出引用
  • 基于多组分相场理论提出了一类模拟三相流体流动的轴对称格子Boltzmann模型. 该模型利用两个粒子分布函数来捕捉三种不同流体之间的相界面, 另一个粒子分布函数来求解流体动力学方程以获得流场信息. 为了刻画坐标变换引起的轴对称效应, 巧妙地设计了演化方程中平衡态分布函数和外力项分布函数, 从理论上保证本文模型可以正确恢复三相流体系统的宏观控制方程, 并且轴对称效应产生的源项中不包含任何复杂的梯度项, 从而比现有的轴对称格子Boltzmann模型更加简单高效. 首先通过模拟一系列轴对称多相流的基准算例, 包括静态的双液滴、液体透镜的扩展和二元流体Rayleigh-Plateau不稳定性, 来验证本文模型的有效性与正确性. 接下来, 利用该模型研究了三相流体的Rayleigh-Plateau不稳定性的增长过程, 定量分析了波数和液柱半径比对复合液体线程破裂过程中界面动力学行为、界面破裂时间以及生成子液滴尺寸的影响. 可以发现复合的液体线程在波数较大时破裂生成一个复合主液滴和卫星液滴, 而在波数较小时可以生成更多数量的卫星液滴, 这导致复合主液滴和卫星液滴的尺寸随着波数的增加呈现先增大而后减少的趋势. 另外, 我们发现内部流体优先于中间流体发生界面破裂, 并且流体界面的破裂时间均随着波数的减小而增加. 最后发现, 增大液柱半径比可以促进内部液体线程的破裂, 而延缓中间液体线程发生破裂, 并且复合主液滴的尺寸随着液柱半径比的增加而增大, 而复合卫星液滴的尺寸对液柱半径比的变化不显著.
    Based on the multi-component phase field theory, in this paper we propose an axisymmetric lattice Boltzmann model for three-phase fluids. The proposed model takes advantage of two particle distribution functions for capturing phase interface among three different fluids, and another particle distribution function for solving the hydrodynamic equations for flow field. In order to describe the axisymmetric effect arising from the coordinate transformation, we elaborately design the equilibrium distribution function and forcing distribution function in the evolution equation, which ensures that the model can accurately recover the macroscopic governing equation for three-phase fluids. Also, the introduced source terms accounting for the axisymmetric effect contain no additional gradient term, which makes it be simpler than the existing lattice Boltzmann model for axisymmetric three-phase fluids. To validate the proposed model, a series of axisymmetric multiphase benchmark examples are performed, including the static double droplets, the spreading of liquid lens, and the binary-fluid Rayleigh-Plateau instability. It is reported that the present model can accurately capture the phase interface, and the predicted steady shapes of the liquid lens agree well with the analytical profiles. Then, the proposed model is used to study the three-phase Rayleigh-Plateau instability and the effects of the wavenumber and the radius ratio of liquid column on the interfacial dynamic behaviour, the breakup time of liquid threads and the size of daughter droplet are investigated in detail. It can be found that the compound liquid thread at a high wavenumber could break up into one main droplet and one satellite droplet, but the multiple satellite droplets can be produced at a low wavenumber, which leads to that the sizes of main and satellite droplets increase with the wavenumber at first and then decrease with it. Besides, we can observe that the inner fluid undergoes the breakup at earlier time than the middle fluid, and the breakup time for both inner and middle fluids increases with the decrease of the wavenumber. Finally, we can find that increasing the radius ratio of liquid column accelerates the breakup of inner-fluid thread, but prevents the breakup of the middle-fluid thread. In addition, the size of the compound main droplet increases with the radius ratio of liquid column, while the size of the compound satellite droplet doest not change much with it.
      通信作者: 梁宏, lianghongstefanie@163.com
    • 基金项目: 国家自然科学基金 (批准号: 11972142) 资助的课题
      Corresponding author: Liang Hong, lianghongstefanie@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11972142)
    [1]

    Smith K A, Solis F J, Chopp D L 2002 Interfaces Free Bound. 4 263

    [2]

    Bonhomme R, Magnaudet J, Duval F, Piar B 2012 J. Fluid Mech. 707 405

    [3]

    Kim J 2007 Comput. Methods Appl. Mech. Eng. 196 4779Google Scholar

    [4]

    Guo Z L, Shu C 2013 Lattice Boltzmann Method and Its Applications in Engineering (Singapore: World Scientific) pp10–32

    [5]

    胡晓亮, 梁宏, 王会利 2020 物理学报 69 044701Google Scholar

    Hu X L, Liang H, Wang H L 2020 Acta Phys. Sin. 69 044701Google Scholar

    [6]

    贺传晖, 刘高洁, 娄钦 2021 物理学报 70 244701Google Scholar

    He C H, Liu G J, Lou Q 2021 Acta Phys. Sin. 70 244701Google Scholar

    [7]

    Spencer T J, Halliday I, Care M C 2010 Phys. Rev. E 82 066701Google Scholar

    [8]

    Leclaire S, Reggio M, Trepanier J 2013 J. Comput. Phys. 246 318Google Scholar

    [9]

    Yu Y, Liu H H, Liang D, Zhang Y H 2019 Phys. Fluids 31 012108Google Scholar

    [10]

    Semprebon C, Kruger T, Kusumaatmaja H 2016 Phys. Rev. E 93 033305Google Scholar

    [11]

    Wöhrwag M, Semprebon C, Moqaddam M A, Karlin I 2018 Phys. Rev. Lett. 120 234501Google Scholar

    [12]

    Liang H, Shi B C, Chai Z H 2016 Phys. Rev. E 93 013308Google Scholar

    [13]

    Liang H, Xu J R, Chen J X, Chai Z H, Shi B C 2019 Appl. Math. Model. 73 487Google Scholar

    [14]

    Liang H, Chai Z H, Shi B C, Guo Z L, Zhang T 2014 Phys. Rev. E 90 063311Google Scholar

    [15]

    Haghani-Hassan-Abadi R, Rahimian M 2020 Acta Mech. 231 2323Google Scholar

    [16]

    Yang J X, Li Y B, Lee C Y, Kim J 2021 Eur. J. Mech.-B/Fluid 89 203Google Scholar

    [17]

    Boyer F, Lapuerta C 2006 ESAIM: Math. Model. Numer. Anal. 40 653Google Scholar

    [18]

    Boyer F, Lapuerta C, Minjeaud S, Piar B, Quintard M 2010 Transp. Porous Media 82 463Google Scholar

    [19]

    Jacqmin D 1999 J. Comput. Phys. 155 96Google Scholar

    [20]

    Qian Y, d’Humieres D, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [21]

    Liang H, Shi B C, Guo Z L, Chai Z H 2014 Phys. Rev. E 89 053320Google Scholar

    [22]

    Liang H, Li Y, Chen J X, Xu J R 2019 Int. J. Heat Mass Transfer 130 1189Google Scholar

    [23]

    Rawlinson J S, Widom B 1982 The Molecular Theory of Capillarity (Oxford: Clarendon Press) pp208–214

    [24]

    Jiang F, Tsuji T 2017 Water Resour. Res. 53 11Google Scholar

    [25]

    Zheng L, Zheng S, Zhai Q L 2021 Comput. Fluid 218 104857Google Scholar

    [26]

    Tjahjadi M, Stone H A, Ottino J M 1992 J. Fluid Mech. 243 297Google Scholar

  • 图 1  静态双液滴测试中三个序参数的稳态分布 (a) $ \phi_1 $的分布; (b) $ \phi_2 $的分布; (c) $ \phi_3 $ 的分布

    Fig. 1.  Steady-state distributions of three order parameters in the static double-droplet test: (a) Distribution of $ \phi_1 $; (b) distribution of $ \phi_2 $; (c) distribution of $ \phi_3 $

    图 2  静态双液滴测试中序参数沿水平线的稳态分布

    Fig. 2.  Steady distributions of the order parameters across the horizontal line in static double-droplet test

    图 3  液体透镜相关几何参数示意图

    Fig. 3.  Schematic diagram of relevant geometric parameters of liquid lens

    图 4  不同界面张力比液体透镜的平衡形态 (a) $\sigma_{12}:\sigma_{13}: $$ \sigma_{23}=0.6:0.6:1$; (b) $ \sigma_{12}:\sigma_{13}:\sigma_{23}=1:1:1 $; (c) $\sigma_{12}: $$ \sigma_{13}:\sigma_{23}=1:4/3:1$.

    Fig. 4.  Equilibrium morphology of liquid lens at different interfacial tension ratios: (a) $ \sigma_{12}:\sigma_{13}:\sigma_{23}=0.6:0.6:1 $; (b) $ \sigma_{12}:\sigma_{13}:\sigma_{23}=1:1:1 $; (c) $\sigma_{12}:\sigma_{13}:\sigma_{23}= 1:4/ $$ 3:1$.

    图 5  不同波数下两相Rayleigh-Plateau不稳定性的界面演化过程 (a) $ k=0.63 $; (b) $ k=0.31 $; (c) $ k=0.21 $.

    Fig. 5.  Interfacial evolution processes of two-phase Rayleigh-Plateau instability with different wavenumbers: (a) $ k=0.63 $; (b) $ k=0.31 $; (c) $ k=0.21 $

    图 6  不同波数下三相Rayleigh-Plateau不稳定性的界面演化过程 (a) $ k=0.42 $; (b) $ k=0.21 $; (c) $ k=0.14 $

    Fig. 6.  Interfacial evolution processes of three-phase Rayleigh-Plateau instability with different wavenumbers: (a) $ k=0.42 $; (b) $ k=0.21 $; (c) $ k=0.14 $

    图 7  不同波数下复合液体线程破裂生成主液滴和卫星液滴的尺寸

    Fig. 7.  The sizes of main and satellite droplets originating from the breakup of compound liquid threads with different wavenumbers

    图 8  不同内外液柱半径比下三相Rayleigh-Plateau不稳定性的界面演化过程 (a) $ RM/RI=1.5 $; (b) $RM/RI= $$ 2$; (c) $ RM/RI=2.5 $

    Fig. 8.  Interfacial evolution of three-phase Rayleigh-Plateau instability with different radius ratios of the inner and outer liquid columns: (a) $ RM/RI=1.5 $; (b) $ RM/RI=2 $; (c) $ RM/RI=2.5 $

    图 9  不同液柱半径比下复合液体线程破裂生成复合主液滴和卫星液滴的尺寸

    Fig. 9.  The sizes of the compound main and satellite droplets originating from the breakup of compound liquid threads with different radius ratios

    表 1  不同表面张力比的液体透镜的平衡接触角$\theta_1$$\theta_2$

    Table 1.  Equilibrium contact angles $\theta_1$ and $\theta_2$ of liquid lens at different surface tension ratios

    表面张力比
    $(\sigma_{12}:\sigma_{13}:\sigma_{23})$
    数值解 解析解 相对误差
    $\theta_1$ $\theta_2$ $\theta_1$ $\theta_2$ $\theta_1$ $\theta_2$
    $0.6:0.6:1$ 34.0 34.0 33.6 33.6 1.2% 1.2%
    $1:1:1$ 60.1 60.1 60 60 0.2% 0.2%
    $1:4/3:1$ 84.4 49.0 83.6 48.2 1.0% 1.7%
    下载: 导出CSV

    表 2  不同表面张力比液体透镜的长度d和高度$h_1$, $h_2$

    Table 2.  Length d and heights $h_1$, $h_2$ of liquid lens at different surface tensions

    表面张力比$(\sigma_{12}:\sigma_{13}:\sigma_{23})$ 数值解 解析解 相对误差
    d $h_1$ $h_2$ d $h_1$ $h_2$ d $h_1$ $h_2$
    $0.6:0.6:1$ 322.1 49.2 49.2 391.8 59.1 59.1 17.8% 16.8% 16.8%
    $1:1:1$ 253.0 73.2 73.2 277.0 80.0 80.0 8.7% 8.5% 8.5%
    $1:4/3:1$ 234.5 106.1 53.4 251.6 112.5 56.3 6.8% 5.7% 5.2%
    下载: 导出CSV
  • [1]

    Smith K A, Solis F J, Chopp D L 2002 Interfaces Free Bound. 4 263

    [2]

    Bonhomme R, Magnaudet J, Duval F, Piar B 2012 J. Fluid Mech. 707 405

    [3]

    Kim J 2007 Comput. Methods Appl. Mech. Eng. 196 4779Google Scholar

    [4]

    Guo Z L, Shu C 2013 Lattice Boltzmann Method and Its Applications in Engineering (Singapore: World Scientific) pp10–32

    [5]

    胡晓亮, 梁宏, 王会利 2020 物理学报 69 044701Google Scholar

    Hu X L, Liang H, Wang H L 2020 Acta Phys. Sin. 69 044701Google Scholar

    [6]

    贺传晖, 刘高洁, 娄钦 2021 物理学报 70 244701Google Scholar

    He C H, Liu G J, Lou Q 2021 Acta Phys. Sin. 70 244701Google Scholar

    [7]

    Spencer T J, Halliday I, Care M C 2010 Phys. Rev. E 82 066701Google Scholar

    [8]

    Leclaire S, Reggio M, Trepanier J 2013 J. Comput. Phys. 246 318Google Scholar

    [9]

    Yu Y, Liu H H, Liang D, Zhang Y H 2019 Phys. Fluids 31 012108Google Scholar

    [10]

    Semprebon C, Kruger T, Kusumaatmaja H 2016 Phys. Rev. E 93 033305Google Scholar

    [11]

    Wöhrwag M, Semprebon C, Moqaddam M A, Karlin I 2018 Phys. Rev. Lett. 120 234501Google Scholar

    [12]

    Liang H, Shi B C, Chai Z H 2016 Phys. Rev. E 93 013308Google Scholar

    [13]

    Liang H, Xu J R, Chen J X, Chai Z H, Shi B C 2019 Appl. Math. Model. 73 487Google Scholar

    [14]

    Liang H, Chai Z H, Shi B C, Guo Z L, Zhang T 2014 Phys. Rev. E 90 063311Google Scholar

    [15]

    Haghani-Hassan-Abadi R, Rahimian M 2020 Acta Mech. 231 2323Google Scholar

    [16]

    Yang J X, Li Y B, Lee C Y, Kim J 2021 Eur. J. Mech.-B/Fluid 89 203Google Scholar

    [17]

    Boyer F, Lapuerta C 2006 ESAIM: Math. Model. Numer. Anal. 40 653Google Scholar

    [18]

    Boyer F, Lapuerta C, Minjeaud S, Piar B, Quintard M 2010 Transp. Porous Media 82 463Google Scholar

    [19]

    Jacqmin D 1999 J. Comput. Phys. 155 96Google Scholar

    [20]

    Qian Y, d’Humieres D, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [21]

    Liang H, Shi B C, Guo Z L, Chai Z H 2014 Phys. Rev. E 89 053320Google Scholar

    [22]

    Liang H, Li Y, Chen J X, Xu J R 2019 Int. J. Heat Mass Transfer 130 1189Google Scholar

    [23]

    Rawlinson J S, Widom B 1982 The Molecular Theory of Capillarity (Oxford: Clarendon Press) pp208–214

    [24]

    Jiang F, Tsuji T 2017 Water Resour. Res. 53 11Google Scholar

    [25]

    Zheng L, Zheng S, Zhai Q L 2021 Comput. Fluid 218 104857Google Scholar

    [26]

    Tjahjadi M, Stone H A, Ottino J M 1992 J. Fluid Mech. 243 297Google Scholar

  • [1] 赖瑶瑶, 陈鑫梦, 柴振华, 施保昌. 基于格子Boltzmann方法的钉扎螺旋波反馈控制. 物理学报, 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] 陈百慧, 施保昌, 汪垒, 柴振华. 基于GPU的二维梯形空腔流的格子Boltzmann模拟与分析. 物理学报, 2023, 72(15): 154701. doi: 10.7498/aps.72.20230430
    [3] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟. 物理学报, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [4] 黄皓伟, 梁宏, 徐江荣. 表面张力对高雷诺数Rayleigh-Taylor不稳定性后期增长的影响. 物理学报, 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [5] 周浩, 李毅, 刘海, 陈鸿, 任磊生. 最优输运无网格方法及其在液滴表面张力效应模拟中的应用. 物理学报, 2021, 70(24): 240203. doi: 10.7498/aps.70.20211078
    [6] 范兴华, 谭大鹏, 李霖, 殷梓超, 王彤. 气-液-固三相流混合建模与求解方法. 物理学报, 2021, 70(12): 124501. doi: 10.7498/aps.70.20202126
    [7] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [8] 胡嘉懿, 张文欢, 柴振华, 施保昌, 汪一航. 三维不可压缩流的12速多松弛格子Boltzmann模型. 物理学报, 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
    [9] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型. 物理学报, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [10] 王佐, 张家忠, 王恒. 非正交多松弛系数轴对称热格子Boltzmann方法. 物理学报, 2017, 66(4): 044701. doi: 10.7498/aps.66.044701
    [11] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究. 物理学报, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [12] 陶实, 王亮, 郭照立. 微尺度振荡Couette流的格子Boltzmann模拟. 物理学报, 2014, 63(21): 214703. doi: 10.7498/aps.63.214703
    [13] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [14] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [15] 苏进, 欧阳洁, 王晓东. 耦合不可压流场输运方程的格子Boltzmann方法研究. 物理学报, 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [16] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用. 物理学报, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [17] 张新明, 周超英, Islam Shams, 刘家琦. 用格子Boltzmann方法数值模拟三维空化现象. 物理学报, 2009, 58(12): 8406-8414. doi: 10.7498/aps.58.8406
    [18] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [19] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程. 物理学报, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
    [20] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流. 物理学报, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
计量
  • 文章访问数:  2780
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 修回日期:  2022-11-15
  • 上网日期:  2022-12-17
  • 刊出日期:  2023-02-20

/

返回文章
返回