搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微尺度振荡Couette流的格子Boltzmann模拟

陶实 王亮 郭照立

引用本文:
Citation:

微尺度振荡Couette流的格子Boltzmann模拟

陶实, 王亮, 郭照立

Lattice Boltzmann modeling of microscale oscillating Couette flow

Tao Shi, Wang Liang, Guo Zhao-Li
PDF
导出引用
  • 采用有效多松弛时间-格子Boltzmann方法(Effective MRT-LBM)数值模拟了微尺度条件下的振荡Couette和Poiseuille流动. 在微流动LBM中引入Knudsen边界层模型,对松弛时间进行修正. 模拟时平板或外力以正弦周期振动,Couette流中考虑了单平板振动、上下板同相振动这两类情况. 研究结果表明,修正后的MRT-LBM模型能有效用于这类非平衡的微尺度流动模拟;对于Couette流,随着Kn数的增大,壁面滑移效应变得越明显. St越大,板间速度剖面的非线性特性越剧烈;两板同相振荡时,若Kn,St均较小,板间流体受到平板拖动剪切的影响很小,板间速度几乎重叠在一起;在振荡Poiseuille流动中,St数增大到一定值时,相位滞后现象减弱;相对于Kn数,St数对振荡Couette 和Poiseuille流中不同位置处速度相位差的产生有较大影响.
    In this paper, the microscale non-equilibrium gas flow, and the oscillating Couette and Poiseuille flows, have been investigated by an effective MRT-LBM. The Knudsen layer model is introduced into lattice Boltzmann method (LBM) for the relaxation time correction. In the simulations the plate or external force oscillates in the form of sine curve, and the Couette flow contains a singular oscillation and a double-plate oscillation. It is revealed that the corrected MRT-LBM model can well handle the simulation of microscale non-equilibrium gas flow. For the Couette flow, the wall slip phenomenon is obvious for a larger Kn number, and the streamwise velocity profiles appear to be of a nonliner character when St number increases. When the two plates oscillate, the streamwise velocity profiles almost overlap with each other at small Kn and St. In the Poiseuille flow case, the extent of phase lag decreases as St exceeds a certain value. Compared to the Kn number, St has a bigger impact on the emerging of phase lag in the oscillating Couette and Poiseuille flows.
    • 基金项目: 国家自然科学基金(批准号:51125024)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51125024).
    [1]

    Stone H A, Stroock A D, Ajdari A 2004 Annu. Rev. Fluid Mech. 36 381

    [2]
    [3]

    Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701 (in Chinese) [黄桥高, 潘光, 宋保维 2014 物理学报 63 054701]

    [4]
    [5]

    Guo Y L, Xu H H, Shen S Q, Wei L 2013 Acta Phys. Sin. 62 144704 (in Chinese) [郭亚丽, 徐鹤函, 沈胜强, 魏兰 2013 物理学报 62 144704]

    [6]

    Harley J C, Huang Y, Bau H H, Zemel J N 1995 J. Fluid Mech. 284 257

    [7]
    [8]

    Arkilic E B, Breuer K S, Schimidt M A 2001 J. Fluid Mech. 437 29

    [9]
    [10]
    [11]

    Guo Z Y, Li Z X 2003 Int. J. Heat and Fluid Flow 24 284

    [12]

    Turner S E, Lam L C, Faghri M, Gregory O J 2004 J. Heat Transfer 126 753

    [13]
    [14]
    [15]

    Zhang Y H, Qin R S, Emerson D R 2005 Phys. Rev. E 71 047702

    [16]

    Nie X B, Doolen G D, Chen S Y 2002 J. Stat. Phys. 107 279

    [17]
    [18]
    [19]

    Succi S 2002 Phys. Rev. Lett. 89 064502

    [20]

    Ansumali S, Karlin I V 2002 Phys. Rev. E 66 026311

    [21]
    [22]

    Tang G H, Tao W Q, He Y L 2005 Phys. Fluids 17 058101

    [23]
    [24]

    Guo Z L, Shi B C, Zheng C G 2007 Europhys. Lett. 80 24001

    [25]
    [26]

    Guo Z L, Shi B C, Zhao T S, Zheng C G 2007 Phys. Rev. E 76 056704

    [27]
    [28]
    [29]

    Guo Z L, Zheng C G, Shi B C 2008 Phys. Rev. E 77 036707

    [30]

    Li Q, He Y L, Tang G H, Tao W Q 2011 Microfluid. Nanofluid. 10 607

    [31]
    [32]
    [33]

    Zhang Y H, Gu X J, Barber R W, Emerson D R 2006 Phys. Rev. E 74 046704

    [34]

    Kim S H, Pitsch H, Boyd I D 2008 Phys. Rev. E 77 026704

    [35]
    [36]
    [37]

    Tang G H, Gu X J, Barber R W, Emerson D R Zhang Y H 2008 Phys. Rev. E 78 026706

    [38]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546

    [39]
    [40]
    [41]

    Qian Y H, D'Humi?res D, Lallemand P 1992 Europhys. Lett. 17 479

    [42]
    [43]

    Hadjiconstantinou N G 2005 Phys. Fluids 17 100611

    [44]

    Taheri P, Rana A S, Torrilhon M, Struchtrup H 2009 Continuum Mech. Thermodyn. 21 423

    [45]
    [46]

    Verhaeghe F, Luo L S, Blanpain B 2009 J. Comput. Phys. 228 147

    [47]
    [48]
    [49]

    Shen C, Tian D B, Xie C, Fan J 2004 Microscale Thermophys. Eng. 8 405

  • [1]

    Stone H A, Stroock A D, Ajdari A 2004 Annu. Rev. Fluid Mech. 36 381

    [2]
    [3]

    Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701 (in Chinese) [黄桥高, 潘光, 宋保维 2014 物理学报 63 054701]

    [4]
    [5]

    Guo Y L, Xu H H, Shen S Q, Wei L 2013 Acta Phys. Sin. 62 144704 (in Chinese) [郭亚丽, 徐鹤函, 沈胜强, 魏兰 2013 物理学报 62 144704]

    [6]

    Harley J C, Huang Y, Bau H H, Zemel J N 1995 J. Fluid Mech. 284 257

    [7]
    [8]

    Arkilic E B, Breuer K S, Schimidt M A 2001 J. Fluid Mech. 437 29

    [9]
    [10]
    [11]

    Guo Z Y, Li Z X 2003 Int. J. Heat and Fluid Flow 24 284

    [12]

    Turner S E, Lam L C, Faghri M, Gregory O J 2004 J. Heat Transfer 126 753

    [13]
    [14]
    [15]

    Zhang Y H, Qin R S, Emerson D R 2005 Phys. Rev. E 71 047702

    [16]

    Nie X B, Doolen G D, Chen S Y 2002 J. Stat. Phys. 107 279

    [17]
    [18]
    [19]

    Succi S 2002 Phys. Rev. Lett. 89 064502

    [20]

    Ansumali S, Karlin I V 2002 Phys. Rev. E 66 026311

    [21]
    [22]

    Tang G H, Tao W Q, He Y L 2005 Phys. Fluids 17 058101

    [23]
    [24]

    Guo Z L, Shi B C, Zheng C G 2007 Europhys. Lett. 80 24001

    [25]
    [26]

    Guo Z L, Shi B C, Zhao T S, Zheng C G 2007 Phys. Rev. E 76 056704

    [27]
    [28]
    [29]

    Guo Z L, Zheng C G, Shi B C 2008 Phys. Rev. E 77 036707

    [30]

    Li Q, He Y L, Tang G H, Tao W Q 2011 Microfluid. Nanofluid. 10 607

    [31]
    [32]
    [33]

    Zhang Y H, Gu X J, Barber R W, Emerson D R 2006 Phys. Rev. E 74 046704

    [34]

    Kim S H, Pitsch H, Boyd I D 2008 Phys. Rev. E 77 026704

    [35]
    [36]
    [37]

    Tang G H, Gu X J, Barber R W, Emerson D R Zhang Y H 2008 Phys. Rev. E 78 026706

    [38]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546

    [39]
    [40]
    [41]

    Qian Y H, D'Humi?res D, Lallemand P 1992 Europhys. Lett. 17 479

    [42]
    [43]

    Hadjiconstantinou N G 2005 Phys. Fluids 17 100611

    [44]

    Taheri P, Rana A S, Torrilhon M, Struchtrup H 2009 Continuum Mech. Thermodyn. 21 423

    [45]
    [46]

    Verhaeghe F, Luo L S, Blanpain B 2009 J. Comput. Phys. 228 147

    [47]
    [48]
    [49]

    Shen C, Tian D B, Xie C, Fan J 2004 Microscale Thermophys. Eng. 8 405

  • [1] 刘高洁, 邵子宇, 娄钦. 多孔介质中含有溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211851
    [2] 胡嘉懿, 张文欢, 柴振华, 施保昌, 汪一航. 三维不可压缩流的12速多松弛格子Boltzmann模型. 物理学报, 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
    [3] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型. 物理学报, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [4] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力. 物理学报, 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [5] 王佐, 张家忠, 王恒. 非正交多松弛系数轴对称热格子Boltzmann方法. 物理学报, 2017, 66(4): 044701. doi: 10.7498/aps.66.044701
    [6] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [7] 刘邱祖, 寇子明, 贾月梅, 吴娟, 韩振南, 张倩倩. 改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟. 物理学报, 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
    [8] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [9] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟. 物理学报, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [10] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究. 物理学报, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [11] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [12] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [13] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流 . 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [14] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [15] 苏进, 欧阳洁, 王晓东. 耦合不可压流场输运方程的格子Boltzmann方法研究. 物理学报, 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [16] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟. 物理学报, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [17] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用. 物理学报, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [18] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [19] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程. 物理学报, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
    [20] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流. 物理学报, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
计量
  • 文章访问数:  2914
  • PDF下载量:  564
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-31
  • 修回日期:  2014-06-04
  • 刊出日期:  2014-11-05

微尺度振荡Couette流的格子Boltzmann模拟

  • 1. 华中科技大学, 煤燃烧国家重点实验室, 武汉 430074;
  • 2. 北京计算科学研究中心, 北京 100084
    基金项目: 国家自然科学基金(批准号:51125024)资助的课题.

摘要: 采用有效多松弛时间-格子Boltzmann方法(Effective MRT-LBM)数值模拟了微尺度条件下的振荡Couette和Poiseuille流动. 在微流动LBM中引入Knudsen边界层模型,对松弛时间进行修正. 模拟时平板或外力以正弦周期振动,Couette流中考虑了单平板振动、上下板同相振动这两类情况. 研究结果表明,修正后的MRT-LBM模型能有效用于这类非平衡的微尺度流动模拟;对于Couette流,随着Kn数的增大,壁面滑移效应变得越明显. St越大,板间速度剖面的非线性特性越剧烈;两板同相振荡时,若Kn,St均较小,板间流体受到平板拖动剪切的影响很小,板间速度几乎重叠在一起;在振荡Poiseuille流动中,St数增大到一定值时,相位滞后现象减弱;相对于Kn数,St数对振荡Couette 和Poiseuille流中不同位置处速度相位差的产生有较大影响.

English Abstract

参考文献 (49)

目录

    /

    返回文章
    返回