搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相场模型的三相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟

杨旭光 王欣 袁晓垒

引用本文:
Citation:

基于相场模型的三相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟

杨旭光, 王欣, 袁晓垒

Numerical simulation of three-phase Rayleigh-Taylor instability based on the phase field model using the lattice Boltzmann method

YANG Xuguang, WANG Xin, YUAN Xiaolei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 本文基于具有守恒性与相容性的N相相场模型, 发展了一种用于高效模拟N相非混溶不可压流体流动的正则化格子Boltzmann方法. 通过设计辅助矩, 该方法能够精确恢复二阶Allen-Cahn方程与修正的动量方程. 通过数值模拟三相液滴透镜铺展与三相Kelvin-Helmholtz不稳定性现象, 验证了所发展的N相正则化格子Boltzmann方法的正确性与有效性. 最后, 对三相Rayleigh-Taylor不稳定性进行了数值模拟与分析, 重点探究了雷诺数在$500\leqslant Re \leqslant 20000$范围内(特别是高雷诺数$Re=20000$工况下)相界面的演化过程, 定量分析了两个界面处气泡与尖钉的振幅以及无量纲化速度的变化规律.
    This paper develops a regularized lattice Boltzmann method for efficiently simulating the flow of N-phase immiscible incompressible fluids based on the phase field model that satisfies conservation and compatibility. By designing auxiliary moments, this method can accurately recover the second-order Allen-Cahn equation and the modified momentum equation. The correctness and effectiveness of the developed N-phase regularized lattice Boltzmann method are validated through numerical simulations of three-phase liquid lens spreading and Kelvin-Helmholtz instability phenomena. Finally, numerical simulations and analyses of three-phase Rayleigh-Taylor instabilities (RTI) were conducted, focusing on the evolution of the phase interface within the Reynolds number range of $ 500 \leqslant Re \leqslant 20000 $ (particularly under high Reynolds number condition of $ Re = 20000 $). Quantitative analyses were performed on the amplitude variations of bubbles and spikes at the two interfaces, as well as the changes in dimensionless velocity. We found that as the Reynolds number increases, the phase interface curls up at multiple locations due to Kelvin-Helmholtz instability, making the fluid more prone to dispersion and fragmentation. This study also simulated the evolution of RTI under different interface perturbations. The results indicate that RTI first develops at the perturbed interface, and its evolution gradually triggers instability at another interface.
  • 图 1  三相液体透镜示意图

    Fig. 1.  The schematic of the spreading of a liquid lens.

    图 2  不同界面张力比下的三相液体透镜平衡态 (a) $ \sigma_{12}:\sigma_{13}:\sigma_{23}=1:1:1 $, (b) $ \sigma_{12}:\sigma_{13}:\sigma_{23}=1:\sqrt{2}:1 $, (c) $ \sigma_{12}:\sigma_{13}: $$ \sigma_{23}=1:\sqrt{3}:1 $

    Fig. 2.  The equilibrium shapes of liquid by ternary fluids: (a) $ \sigma_{12}:\sigma_{13}:\sigma_{23}=1:1:1 $, (b) $ \sigma_{12}:\sigma_{13}:\sigma_{23}=1:\sqrt{2}:1 $, (c) $ \sigma_{12}:\sigma_{13}:\sigma_{23}=1:\sqrt{3}:1 $.

    图 3  Kelvin-Helmholtz不稳定性示意图

    Fig. 3.  The schematic of the spreading of Kelvin-Helmholtz instability.

    图 4  不同时刻下的密度分布 (a) $ t=2000 $, (b) $ t=3000 $, (c) $ t=5000 $, (d) $ t=9000 $

    Fig. 4.  The density distribution at (a) $ t=2000 $, (b) $ t=3000 $, (c) $ t=5000 $, (d) $ t=9000 $.

    图 5  不同时刻下的涡场图 (a) $ t=2000 $, (b) $ t=3000 $, (c) $ t=5000 $, (d) $ t=9000 $

    Fig. 5.  The vorticity field at (a) $ t=2000 $, (b) $ t=3000 $, (c) $ t=5000 $, (d) $ t=9000 $.

    图 6  Rayleigh-Taylor不稳定性示意图

    Fig. 6.  The schematic of the Rayleigh-Taylor instability.

    图 7  两相情况相界面扰动演化过程 (a) $ Re=30 $, (b) $ Re=150 $, (c) $ Re=3000 $, (d) $ Re=30 $[7], (e) $ Re=150 $[7], (f)$ Re=3000 $[7]

    Fig. 7.  Phase interface disturbance evolution process in two-phase situation: (a) $ Re=30 $, (b)$ Re=150 $, (c) $ Re=3000 $, (d) $ Re= $$ 30 $[7], (e) $ Re=150 $[7], (f) $ Re=3000 $[7].

    图 8  两相情况气泡与尖钉振幅随时间的变化 (a) 尖钉振幅, (b) 气泡振幅

    Fig. 8.  Variation of bubble and spike amplitudes with time in two-phase situation: (a)$ H_{{\rm{s}}} $, (b)$ H_{{\rm{b}}} $.

    图 9  较低雷诺数对RT不稳定性中相界面演化过程的影响 (a) $ Re=500 $, (b) $ Re=1000 $, (c) $ Re=2000 $

    Fig. 9.  The effect of lower Reynolds numbers on the evolution of the phase interface in RTI: (a) $ Re=500 $, (b) $ Re=1000 $, (c) $ Re=2000 $.

    图 10  较高雷诺数对RT不稳定性中相界面演化过程的影响 (a) $ Re=5000 $, (b)$ Re=10000 $, (c) $ Re=20000 $

    Fig. 10.  The effect of higher Reynolds numbers on the evolution of the phase interface in RTI: (a) $ Re=5000 $, (b)$ Re=10000 $, (c) $ Re=20000 $.

    图 11  雷诺数对气泡与尖钉随时间演化振幅的影响 (a) 界面一尖钉振幅, (b) 界面二尖钉振幅, (c) 界面一气泡振幅, (d) 界面二气泡振幅

    Fig. 11.  Effect of Reynolds number on the temporal evolution of bubble and spike amplitudes: (a)$ H_{{\rm{s1}}} $, (b)$ H_{{\rm{s2}}} $, (c)$ H_{{\rm{b1}}} $, (d)$ H_{{\rm{b2}}} $.

    图 12  雷诺数对无量纲化的气泡和尖钉演化速度的影响 (a) 界面一尖钉, (b) 界面二尖钉, (c) 界面一气泡, (d)界面二气泡

    Fig. 12.  Effect of Reynolds number on the normalized growth rate of bubbles and spikes: (a)$ Fr_{{\rm{s1}}} $, (b)$ Fr_{{\rm{s2}}} $, (c)$ Fr_{{\rm{b1}}} $, (d)$ Fr_{{\rm{b2}}} $.

    图 13  上层相界面扰动相界面演化过程 (a) $ Re=500 $, (b) $ Re=1000 $, (c) $ Re=5000 $, (d) $ Re=20000 $

    Fig. 13.  Upper interfacial perturbation and evolution: (a) $ Re=500 $, (b) $ Re=1000 $, (c) $ Re=5000 $, (d) $ Re=20000 $.

    图 14  上层相界面扰动时气泡与尖钉振幅随时间的变化 (a) 界面一尖钉振幅, (b) 界面二尖钉振幅, (c) 界面一气泡振幅, (d) 界面二气泡振幅

    Fig. 14.  Bubble and spike amplitude evolution during upper interface perturbation: (a) $ H_{{\rm{s1}}} $, (b) $ H_{{\rm{s2}}} $, (c) $ H_{{\rm{b1}}} $, (d) $ H_{{\rm{b2}}} $.

    图 15  下层相界面扰动相界面演化过程 (a) $ Re=500 $, (b) $ Re=1000 $, (c) $ Re=5000 $, (d) $ Re=20000 $

    Fig. 15.  Lower interfacial perturbation and evolution: (a) $ Re=500 $, (b)$ Re=1000 $, (c) $ Re=5000 $, (d) $ Re=20000 $.

    图 16  下层相界面扰动时气泡与尖钉振幅随时间的变化 (a) 界面一尖钉振幅, (b) 界面二尖钉振幅, (c) 界面一气泡振幅, (d) 界面二气泡振幅

    Fig. 16.  Bubble and spike amplitude evolution during lower interface perturbation: (a) $ H_{{\rm{s1}}} $, (b) $ H_{{\rm{s2}}} $, (c) $ H_{{\rm{b1}}} $, (d) $ H_{{\rm{b2}}} $.

    表 1  不同表面张力比下液体透镜的长度d和高度$ h_1 $, $ h_2 $

    Table 1.  The length d, $ h_1 $ and $ h_2 $ at equilibrium state with different surface tension ratios.

    $ \sigma_{12}:\sigma_{13}:\sigma_{23} $ 解析解 数值解 相对误差
    d $ h_1 $ $ h_2 $ d $ h_1 $ $ h_2 $ d $ h_1 $ $ h_2 $
    $ 1:1:1 $ 83.10 23.99 23.99 84.26 24.45 24.42 1.40% 1.92% 1.80%
    $ 1:\sqrt{2}:1 $ 72.67 36.34 15.05 74.02 37.03 15.34 1.86% 1.90% 1.93%
    $ 1:\sqrt{3}:1 $ 55.05 47.67 7.38 55.83 48.42 7.48 1.42% 1.57% 1.36%
    下载: 导出CSV
  • [1]

    Barber J L, Kadau K, Germann T C, Alder B J 2008 Eur. Phys. J. B 64 271Google Scholar

    [2]

    Celani A, Mazzino A, Bjorkholm J E, Vozella L 2006 Phys. Rev. Lett. 96 134504Google Scholar

    [3]

    Moin P 1991 Comput. Methods Appl. Mech. Eng. 87 329Google Scholar

    [4]

    郭照立, 郑楚光 2009 格子 Boltzmann 方法的原理及应用 (北京: 科学出版社)

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press

    [5]

    何雅玲, 王勇, 李庆 2009 格子 Boltzmann 方法的理论及应用 (北京: 科学出版社)

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press

    [6]

    He X Y, Chen S Y, Zhang R Y 1999 J. Comput. Phys. 152 642Google Scholar

    [7]

    Liang H, Shi B C, Guo Z L, Chai Z H 2014 Phys. Rev. E 89 053320Google Scholar

    [8]

    Liang H, Li Q X, Shi B C, Chai Z H 2016 Phys. Rev. E 93 033133

    [9]

    Liang H, Xia Z H, Huang H W 2021 Phys. Fluids 33 082103Google Scholar

    [10]

    李洋, 苏婷, 梁宏, 徐江荣 2022 物理学报 67 224701

    Li Y, Su T, Liang H, Xu J R 2022 Acta Phys. Sin. 67 224701

    [11]

    马聪, 刘斌, 梁宏 2022 物理学报 71 044701Google Scholar

    Ma C, Liu B, Liang H 2022 Acta Phys. Sin. 71 044701Google Scholar

    [12]

    李德梅, 赖惠林, 许爱国, 张广财, 林传栋, 甘延标 2018 物理学报 67 080501Google Scholar

    Li D M, Lai H L, Chen S Y, Zhang G C, Lin C D, Gan Y B 2018 Acta Phys. Sin. 67 080501Google Scholar

    [13]

    Zhang R Y, He X Y, Chen S Y 2000 Comput. Phys. Commun. 129 121Google Scholar

    [14]

    胡晓亮, 梁宏, 王会利 2020 物理学报 69 044701Google Scholar

    Hu X L, Liang H, Wang H L 2020 Acta Phys. Sin. 69 044701Google Scholar

    [15]

    Zhan C J, Liu X, Chai Z H, Shi B C 2024 Commun. Comput. Phys 36 850Google Scholar

    [16]

    Kalantarpour R, Ebadi A, Hosseinalipour S M, Liang H 2020 Comput. & Fluids 204 104480

    [17]

    Boyer F, Lapuerta C 2006 ESAIM: Math. Model. Numer. Anal. 40 653Google Scholar

    [18]

    Boyer F, Lapuerta C, Minjeaud S et al 2010 Transp. Porous Media 82 463Google Scholar

    [19]

    Dong S 2018 J. Comput. Phys. 361 1Google Scholar

    [20]

    Zheng L, Zheng S, Zhai Q L 2020 Phys. Rev. E 101 043302Google Scholar

    [21]

    Mirjalili S, Mani A 2024 J. Comput. Phys. 498 112657Google Scholar

    [22]

    Xia Q, Yang J X, Li Y B 2023 Phys. Fluids 35 012120Google Scholar

    [23]

    Latt J, Chopard B 2006 Math. Comput. Simulat. 72 165Google Scholar

    [24]

    Montessori A, Falcucci G, Prestininzi P, et al 2014 Phys. Rev. E 89 053317Google Scholar

    [25]

    Liu X, Chen Y, Chai Z H, Shi B C 2024 Phys. Rev. E 109 025301Google Scholar

    [26]

    Huang Y H, Chen X M, Chai Z H, Shi B C 2025 Adv. Appl. Math. Mech. 17 1370Google Scholar

    [27]

    黄皓伟, 梁宏, 徐江荣 2021 物理学报 70 114701Google Scholar

    Huang H W, Liang H, Xu J R 2021 Acta Phys. Sin. 70 114701Google Scholar

    [28]

    李春熠, 郭照立 2025 物理学报 74 064702Google Scholar

    Li C Y, Guo Z L 2025 Acta Phys. Sin. 74 064702Google Scholar

    [29]

    Huang Z Y, Lin G, Ardekani A M 2021 J. Comput. Phys. 434 110229Google Scholar

    [30]

    Mirjalili S, Mani A 2021 J. Comput. Phys. 426 109918Google Scholar

    [31]

    Qian Y H, d'Humières D, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [32]

    Yang X F, Zhao J, Wang Q, Shen J 2017 Math. Models Methods Appl. Sci. 27 1993Google Scholar

    [33]

    Hu Y, Li D C, He Q 2020 Int. J. Multiph. Flow 132 103432Google Scholar

    [34]

    Yuan X L, Shi B C, Zhan C J, Chai Z H 2022 Phys. Fluids 34 023311Google Scholar

    [35]

    Wu J W, Yang J X, Tan Z J 2022 Comput. Methods Appl. Mech. Eng. 398 115291Google Scholar

    [36]

    章诗婷, 肖鸿威, 周锦翔, 牛小东 2022 空气动力学学报 40 75

    Zhang S T, Xiao H W, Zhou H X, Niu X D 2022 Acta Aerodyn. Sin. 40 75

    [37]

    Fakhari A, Lee T 2013 Phys. Rev. E 87 023304Google Scholar

    [38]

    Fakhari A, Geier M, Lee T 2016 J. Comput. Phys. 315 434Google Scholar

    [39]

    Zhou X, Dong B, Zhan C J, Li W Z 2020 Int. J. Aerosp. Eng. 2020 8885226

    [40]

    Ramaprabhu P, Dimonte G, Lee T 2016 Phys. Rev. E 74 066308

  • [1] 侯鹏洋, 谢佳苗, 李京阳, 张鹏, 李兆凯, 郝文乾, 田佳, 王哲, 李福正. 基于力-热-电化学耦合下固态锂电池枝晶生长的相场模拟. 物理学报, doi: 10.7498/aps.74.20241727
    [2] 李春熠, 郭照立. 基于准不可压相场理论的精确平衡两相格子Boltzmann方法. 物理学报, doi: 10.7498/aps.74.20241513
    [3] 刘东昆, 王庆宇, 张田, 周羽, 王翔. 大晶粒UO2燃料裂变气体释放行为相场模拟研究. 物理学报, doi: 10.7498/aps.73.20231773
    [4] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究. 物理学报, doi: 10.7498/aps.72.20230824
    [5] 刘程, 梁宏. 三相流体的轴对称格子 Boltzmann 模型及其在 Rayleigh-Plateau 不稳定性的应用. 物理学报, doi: 10.7498/aps.72.20221967
    [6] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟. 物理学报, doi: 10.7498/aps.71.20212061
    [7] 黄皓伟, 梁宏, 徐江荣. 表面张力对高雷诺数Rayleigh-Taylor不稳定性后期增长的影响. 物理学报, doi: 10.7498/aps.70.20201960
    [8] 李碧勇, 彭建祥, 谷岩, 贺红亮. 爆轰加载下高纯铜界面Rayleigh-Taylor不稳定性实验研究. 物理学报, doi: 10.7498/aps.69.20191999
    [9] 张更, 王巧, 沙立婷, 李亚捷, 王达, 施思齐. 相场模型及其在电化学储能材料中的应用. 物理学报, doi: 10.7498/aps.69.20201411
    [10] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, doi: 10.7498/aps.69.20191504
    [11] 胡嘉懿, 张文欢, 柴振华, 施保昌, 汪一航. 三维不可压缩流的12速多松弛格子Boltzmann模型. 物理学报, doi: 10.7498/aps.68.20190984
    [12] 赵凯歌, 薛创, 王立锋, 叶文华, 吴俊峰, 丁永坤, 张维岩, 贺贤土. 经典瑞利-泰勒不稳定性界面变形演化的改进型薄层模型. 物理学报, doi: 10.7498/aps.67.20172613
    [13] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型. 物理学报, doi: 10.7498/aps.67.20181230
    [14] 李德梅, 赖惠林, 许爱国, 张广财, 林传栋, 甘延标. 可压流体Rayleigh-Taylor不稳定性的离散Boltzmann模拟. 物理学报, doi: 10.7498/aps.67.20171952
    [15] 袁永腾, 王立峰, 涂绍勇, 吴俊峰, 曹柱荣, 詹夏宇, 叶文华, 刘慎业, 江少恩, 丁永坤, 缪文勇. 掺杂对CH样品Rayleigh-Taylor不稳定性增长的影响. 物理学报, doi: 10.7498/aps.63.235203
    [16] 夏同军, 董永强, 曹义刚. 界面张力对Rayleigh-Taylor不稳定性的影响. 物理学报, doi: 10.7498/aps.62.214702
    [17] 霍新贺, 王立锋, 陶烨晟, 李英骏. 非理想流体中Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究. 物理学报, doi: 10.7498/aps.62.144705
    [18] 陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏. 任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究. 物理学报, doi: 10.7498/aps.61.075207
    [19] 苏进, 欧阳洁, 王晓东. 耦合不可压流场输运方程的格子Boltzmann方法研究. 物理学报, doi: 10.7498/aps.61.104702
    [20] 赵达文, 李金富. 相场模型模拟液固界面各向异性作用下自由枝晶生长. 物理学报, doi: 10.7498/aps.58.7094
计量
  • 文章访问数:  468
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-20

/

返回文章
返回