-
金属界面不稳定性是内爆物理压缩过程中关注的重要问题, 与传统流体界面不稳定性具有显著区别. 由于相关理论和实验诊断技术的限制, 目前该问题的研究还明显不足. 为加深对金属界面不稳定性扰动增长行为的认识, 本文建立了爆轰加载下高纯铜界面Rayleigh-Taylor不稳定性研究的实验诊断技术和数据处理方法, 得到了扰动发展早期不同时刻界面扰动增长的X光图像. 实验结果分析表明: 在爆轰产物的无冲击加载条件下扰动波长基本保持不变, 而初始扰动幅值越大, 界面扰动增长的趋势就越明显; 同时随着样品前界面扰动的不断发展, 在样品的后自由面也出现了与前界面初始相位相反的扰动特征, 即样品前界面扰动为波谷的位置所对应的后界面先运动而逐渐演变为波峰, 而前界面扰动为波峰的位置所对应的后界面则演变为波谷; 在5.26 μs时刻, 界面扰动幅值增长为初始值的700%左右, 应变率达到了约105/s. 结合数值模拟研究表明: 在此情况下常用的Steinberg-Cochran-Guinan 模型在一定程度上低估了高纯铜材料强度的强化特性, 无法准确地描述强度对界面扰动增长的制稳作用, 从而导致数值模拟结果要大于实验测量结果.
-
关键词:
- Rayleigh-Taylor不稳定性 /
- 爆轰加载 /
- 扰动增长 /
- X光照相
The instability of metal interface is an important problem in the process of implosion physical compression, which is significantly different from the traditional fluid interface instability. Due to the limitation of related theory and experimental diagnosis technology, this problem is studied still insufficiently. In order to understand in depth the perturbation growth behavior of metal interface instability, the technique for high explosive driven Rayleigh-Taylor instability experiment on the oxygen-free high conductivity (OFHC) copper is developed. The perturbation growth on OFHC copper interface with varying initial perturbation amplitude at a specific time is recorded by radiography. According to the data processing on the X-ray images, the perturbation growth behaviors of the interface at different times are obtained. The experimental results show that the larger the initial perturbation amplitude, the faster the perturbation grows, but the perturbation wavelength of the interface remains almost unchanged at the explosive loading. The perturbation on the front interface will have an effect on the back free interface, and cause some corresponding disturbance to occur on the surface, namely, on the back free interface, the position corresponding to the perturbation trough of the front interface first moves and gradually evolves into a spike, while the position corresponding to perturbation crest evolves into a bubble. The strain rate of instability perturbation growth reaches ~105/s, and the perturbation amplitude of the interface increases to about 700% of the initial value at 5.26 μs. The corresponding numerical simulation results show that the normal SCG model underestimates the strength of copper and cannot well describe the stabilizing effect of material strength at this high strain rate, thereby leading to the fact that the simulation results are higher than the experimental results.-
Keywords:
- Rayleigh-Taylor instability /
- explosive loading /
- perturbation growth /
- radiography
[1] 王继海 1994 二维非定常流体和激波 (北京: 科学出版社) 第348页
Wang J H 1994 2D-Unsteady Fluid Flow and Shock Wave (Beijing: Science Press) p348 (in Chinese)
[2] 刘军, 冯其京, 周海兵 2014 物理学报 63 155201Google Scholar
Liu J, Feng Q J, Zhou H B 2014 Acta Phys. Sin. 63 155201Google Scholar
[3] 张维岩, 叶文华, 吴俊峰, 等 2014 中国科学G辑: 物理学 力学 天文学 44 1
Zhang W Y, Ye W H, Wu J F, et al. 2014 Sci. China, Ser. G: Phys. Mech. Astron. 44 1
[4] Mikhailov A L 2007 Phys. Mesomech. 10 265Google Scholar
[5] Miles J W 1966 General Dynamics Technical Report No. GAMD-7335 AD 643161
[6] Drucker D C 1980 Mechanics Today 5 37
[7] Swegle J W, Robinson A C 1989 J. Appl. Phys. 66 072838
[8] Piriz A R 2010 Phys. Rev. Lett. 105 179601
[9] Park H S, Lorenz K T, Cavallo R M, et al. 2010 Phys. Rev. Lett. 105 179602
[10] Barnes J F, Blewett P J, McQueen R G, et al. 1974 J. Appl. Phys. 45 727Google Scholar
[11] Park H S, Remington B A, Becker R C, et al. 2010 Phys. Plasmas 17 6314
[12] 黄文斌, 邹立勇, 刘金宏, 等 2010 实验流体力学 24 39Google Scholar
Huang W B, Zhou L Y, Liu J H, et al. 2010 J. Exper. Fluid Mech. 24 39Google Scholar
[13] 刘金宏, 谭多望, 张旭, 等 2012 高压物理学报 26 687Google Scholar
Liu J H, Tan D W, Zhang X, et al. 2012 Chin. J. High Press Phys. 26 687Google Scholar
[14] 柏劲松, 李平, 谭多望, 等 2007 力学学报 39 741Google Scholar
Bai J S, Li P, Tan D W, et al. 2007 Chin J. Theor. Appl. Mech. 39 741Google Scholar
[15] 李源, 罗喜胜 2014 物理学报 63 085203Google Scholar
Li Y, Luo X S 2014 Acta Phys. Sin. 63 085203Google Scholar
[16] 赵凯歌, 薛创, 王立锋, 等 2018 物理学报 67 094701Google Scholar
Zhao K G, Xue C, Wang L F, et al. 2018 Acta Phys. Sin. 67 094701Google Scholar
[17] 赵信文, 李欣竹, 王学军, 等 2015 物理学报 64 124701Google Scholar
Zhao X W, Li X Z, Wang X J, et al. 2015 Acta Phys. Sin. 64 124701Google Scholar
[18] 殷建伟, 潘昊, 吴子辉, 郝鹏程, 段卓平, 胡晓棉 2017 物理学报 66 204701Google Scholar
Yin J W, Pan H, Wu Z H, Hao P C, Duan Z P, Hu X M 2017 Acta Phys. Sin. 66 204701Google Scholar
[19] 何长江, 周海兵, 杭义洪 2009 中国科学G辑: 物理学 力学 天文学 39 1170
He C J, Zhou H B, Hang Y H 2009 Sci. China, Ser. G: Phys. Mech. Astron. 39 1170
[20] 潘昊, 吴子辉, 胡晓棉, 等 2013 高压物理学报 27 778Google Scholar
Pan H, Wu Z H, Hu X M 2013 Chin. J. High Press Phys. 27 778Google Scholar
[21] 王涛, 柏劲松, 曹仁义, 等 2018 高压物理学报 32 16
Wang T, Bai J S, Cao R Y, et al. 2018 Chin. J. High Press Phys. 32 16
[22] Bai X B, Wang T, Zhu Y X, et al. 2018 World J. Mech. 8 94Google Scholar
[23] Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498Google Scholar
-
表 1 不同时刻高纯铜样品界面扰动特征参数
Table 1. Interface perturbation characters of the high purity copper at different times.
实验
编号初始波
长/mm初始幅
值/mm当前幅
值/mm照相
时刻/μs1 5.0 0.3 0.86 ± 0.05 1.98 0.5 1.17 ± 0.05 2 5.0 0.3 1.65 ± 0.05 3.50 0.5 2.67 ± 0.05 3 5.0 0.3 1.98 ± 0.05 5.26 0.5 3.42 ± 0.05 -
[1] 王继海 1994 二维非定常流体和激波 (北京: 科学出版社) 第348页
Wang J H 1994 2D-Unsteady Fluid Flow and Shock Wave (Beijing: Science Press) p348 (in Chinese)
[2] 刘军, 冯其京, 周海兵 2014 物理学报 63 155201Google Scholar
Liu J, Feng Q J, Zhou H B 2014 Acta Phys. Sin. 63 155201Google Scholar
[3] 张维岩, 叶文华, 吴俊峰, 等 2014 中国科学G辑: 物理学 力学 天文学 44 1
Zhang W Y, Ye W H, Wu J F, et al. 2014 Sci. China, Ser. G: Phys. Mech. Astron. 44 1
[4] Mikhailov A L 2007 Phys. Mesomech. 10 265Google Scholar
[5] Miles J W 1966 General Dynamics Technical Report No. GAMD-7335 AD 643161
[6] Drucker D C 1980 Mechanics Today 5 37
[7] Swegle J W, Robinson A C 1989 J. Appl. Phys. 66 072838
[8] Piriz A R 2010 Phys. Rev. Lett. 105 179601
[9] Park H S, Lorenz K T, Cavallo R M, et al. 2010 Phys. Rev. Lett. 105 179602
[10] Barnes J F, Blewett P J, McQueen R G, et al. 1974 J. Appl. Phys. 45 727Google Scholar
[11] Park H S, Remington B A, Becker R C, et al. 2010 Phys. Plasmas 17 6314
[12] 黄文斌, 邹立勇, 刘金宏, 等 2010 实验流体力学 24 39Google Scholar
Huang W B, Zhou L Y, Liu J H, et al. 2010 J. Exper. Fluid Mech. 24 39Google Scholar
[13] 刘金宏, 谭多望, 张旭, 等 2012 高压物理学报 26 687Google Scholar
Liu J H, Tan D W, Zhang X, et al. 2012 Chin. J. High Press Phys. 26 687Google Scholar
[14] 柏劲松, 李平, 谭多望, 等 2007 力学学报 39 741Google Scholar
Bai J S, Li P, Tan D W, et al. 2007 Chin J. Theor. Appl. Mech. 39 741Google Scholar
[15] 李源, 罗喜胜 2014 物理学报 63 085203Google Scholar
Li Y, Luo X S 2014 Acta Phys. Sin. 63 085203Google Scholar
[16] 赵凯歌, 薛创, 王立锋, 等 2018 物理学报 67 094701Google Scholar
Zhao K G, Xue C, Wang L F, et al. 2018 Acta Phys. Sin. 67 094701Google Scholar
[17] 赵信文, 李欣竹, 王学军, 等 2015 物理学报 64 124701Google Scholar
Zhao X W, Li X Z, Wang X J, et al. 2015 Acta Phys. Sin. 64 124701Google Scholar
[18] 殷建伟, 潘昊, 吴子辉, 郝鹏程, 段卓平, 胡晓棉 2017 物理学报 66 204701Google Scholar
Yin J W, Pan H, Wu Z H, Hao P C, Duan Z P, Hu X M 2017 Acta Phys. Sin. 66 204701Google Scholar
[19] 何长江, 周海兵, 杭义洪 2009 中国科学G辑: 物理学 力学 天文学 39 1170
He C J, Zhou H B, Hang Y H 2009 Sci. China, Ser. G: Phys. Mech. Astron. 39 1170
[20] 潘昊, 吴子辉, 胡晓棉, 等 2013 高压物理学报 27 778Google Scholar
Pan H, Wu Z H, Hu X M 2013 Chin. J. High Press Phys. 27 778Google Scholar
[21] 王涛, 柏劲松, 曹仁义, 等 2018 高压物理学报 32 16
Wang T, Bai J S, Cao R Y, et al. 2018 Chin. J. High Press Phys. 32 16
[22] Bai X B, Wang T, Zhu Y X, et al. 2018 World J. Mech. 8 94Google Scholar
[23] Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498Google Scholar
计量
- 文章访问数: 6362
- PDF下载量: 83
- 被引次数: 0