-
对柱面爆轰驱动内壁刻有正弦扰动的金属钢壳与内部硅橡胶界面产生不稳定性问题进行数值模拟,计算结果与实验结果定性符合. 与不考虑金属强度情况对比分析认为,未熔化状态下金属强度对不稳定性具有较强抑制作用,在某些加载条件下会使扰动增长率随扰动模数增加而减小. 之后,对强度因素影响下内爆压缩驱动金属不稳定性问题的扰动发展规律进行了总结. 在聚心反射波到达壳体之前,造成初始界面反转的RM不稳定性起主导作用,随着扰动模数增加扰动由呈近似线性发展到基本不发展变化,基本不变化后的扰动振幅也随模数增加而减小. 聚心反射波作用到壳体内界面后,减速RT不稳定性作用明显增强,与强度等因素共同作用造成扰动呈明显非线性发展. 无论是前期RM不稳定性主导阶段还是之后以减速RT不稳定性为主的扰动发展阶段,强度因素均能造成未熔化状态下金属不稳定性截止波长存在.Simulation of metal instability with the initial sine perturbation on the inside of the metal shell driven by cylindrical implosion is made, and the simulation results is in accordance with the experiments. By comparing with the simulation result without considering the strength of the metals, the analysis shows that the strength of unmelted metal has a strong inhibitory effect to the metal instability, and under certain loading conditions the growth rate of the perturbation will decrease with the increase of the perturbation mode number. After that, the laws of the metal instability under explosive-driven conditions are summarized. Before the implosion reflected wave arrives at the shell, RM instability plays a dominant role. After the implosion reflected wave is applied to the shell, RT instability is significantly enhanced, the effect combined with the strength of the perturbations shows a nonlinear evolution. Under both RM and RT instability condition, the strength of metal could cause the cutoff wavelength to exist in unmelted state.
-
Keywords:
- metal instability /
- cylindrical implosion /
- strength /
- perturbation mode number
[1] [2] Ye W H, Zhang W Y, He X T 2000 Acta phys. Sin. 49 762 (in Chinese) [叶文华, 张维岩, 贺贤土 2000 物理学报 49 762]
[3] [4] Wu J F, Ye W H, Zhang W Y, He X T 2003 Acta Phys. Sin. 52 1688 (in Chinese) [吴俊峰, 叶文华, 张维岩, 贺贤土 2003 物理学报 52 1688]
[5] DuanY Y, GuoY H, WangW S, Qiu A C 2004 Acta Phys. Sin. 53 3429 (in Chinese) [段耀勇, 郭永辉, 王文生, 邱爱慈 2004 物理学报 53 3429]
[6] [7] Shao J L, Wang P, He A M, Qin C S 2012 Acta Phys. Sin. 61 184701 (in Chinese) [邵建立, 王裴, 何安民, 秦承森 2012 物理学报 61 184701]
[8] [9] [10] Wang P, Shao J L, Qin C S 2012 Acta Phys. Sin. 61 234701 (in Chinese) [王裴, 邵建立, 秦承森 2012 物理学报 61 234701]
[11] Barnes J F, Blewett P J, McQueen R G 1974 J. Appl. Phys. 45 727
[12] [13] [14] Frachet V, Geleznikoff F, Guix F, Hauducoeur F, Legrand M, Wilke N, Wullschleger M 1989 the Proceedings of the 2nd International Workshop on the Physics of Compressible Turbulent Mixing, Pleasanton, November, 1989 p849
[15] [16] Colvin J D, Legrand M, Remington B A 2003 J. Appl. Phys. 93 5287
[17] Terones G 2005 Phys. Re. E 71 036306
[18] [19] [20] He C J, Zhou H B, Hang Y H 2009 Sci. China 39 1170 (in Chinese) [何长江, 周海兵, 杭义洪 2009 中国科学 39 1170]
[21] Wang J H 1994 2D-Unsteady Fluid Flow and shockwave (Beijing: Science Press) p348 (in Chinese) [王继海1994二维非定常流体和激波(北京: 科学出版社)第348页]
[22] [23] Liu J, He C J, Liang X H 2008 Chin. J. High Press. Phys. 22 72 (in Chinese) [刘军, 何长江, 梁仙红 2008 高压物理学报 22 72]
[24] [25] [26] Liu J, Wang Y J, Liang X H 2013 Chin. J. Comput. Mech. 30 699 (in Chinese) [刘军, 王言金, 粱仙红 2013 计算力学学报 30 699]
[27] Strang G 1968 J. Numer. Anal. 5 506
[28] [29] Li D Y, Xu G R, Shui H S, He G Y, Chen G N, Yuan G X 1998 Numerical Simulation Method of 2D-Unsteady Fluid Flow (Beijing: Science Press) p112 (in Chinese) [李德元, 徐国荣, 水鸿寿, 何高玉, 陈光南, 袁国兴 1998 二维非定常流体力学数值方法(北京: 科学出版社)第112页]
[30] [31] Liu J, Feng Q J, He C J 2008 MOF interface reconstruction method and application GF-A 0114788 (in Chinese) [刘军, 冯其京, 何长江 2008 MOF界面重构方法及应用中国国防科学技术报告GF-A 0114788]
[32] [33] [34] Li W X 2003 One dimensional unsteady flow and shock wave (Beijing: National Defence Industry Press) p40 (in Chinese) [李维新2003一维不定常流与冲击波(北京: 国防工业出版社)第40页]
[35] Steinberg D J 1996 Equation of State and Strength Properties of Selected Materials UCRL-MA-106439
-
[1] [2] Ye W H, Zhang W Y, He X T 2000 Acta phys. Sin. 49 762 (in Chinese) [叶文华, 张维岩, 贺贤土 2000 物理学报 49 762]
[3] [4] Wu J F, Ye W H, Zhang W Y, He X T 2003 Acta Phys. Sin. 52 1688 (in Chinese) [吴俊峰, 叶文华, 张维岩, 贺贤土 2003 物理学报 52 1688]
[5] DuanY Y, GuoY H, WangW S, Qiu A C 2004 Acta Phys. Sin. 53 3429 (in Chinese) [段耀勇, 郭永辉, 王文生, 邱爱慈 2004 物理学报 53 3429]
[6] [7] Shao J L, Wang P, He A M, Qin C S 2012 Acta Phys. Sin. 61 184701 (in Chinese) [邵建立, 王裴, 何安民, 秦承森 2012 物理学报 61 184701]
[8] [9] [10] Wang P, Shao J L, Qin C S 2012 Acta Phys. Sin. 61 234701 (in Chinese) [王裴, 邵建立, 秦承森 2012 物理学报 61 234701]
[11] Barnes J F, Blewett P J, McQueen R G 1974 J. Appl. Phys. 45 727
[12] [13] [14] Frachet V, Geleznikoff F, Guix F, Hauducoeur F, Legrand M, Wilke N, Wullschleger M 1989 the Proceedings of the 2nd International Workshop on the Physics of Compressible Turbulent Mixing, Pleasanton, November, 1989 p849
[15] [16] Colvin J D, Legrand M, Remington B A 2003 J. Appl. Phys. 93 5287
[17] Terones G 2005 Phys. Re. E 71 036306
[18] [19] [20] He C J, Zhou H B, Hang Y H 2009 Sci. China 39 1170 (in Chinese) [何长江, 周海兵, 杭义洪 2009 中国科学 39 1170]
[21] Wang J H 1994 2D-Unsteady Fluid Flow and shockwave (Beijing: Science Press) p348 (in Chinese) [王继海1994二维非定常流体和激波(北京: 科学出版社)第348页]
[22] [23] Liu J, He C J, Liang X H 2008 Chin. J. High Press. Phys. 22 72 (in Chinese) [刘军, 何长江, 梁仙红 2008 高压物理学报 22 72]
[24] [25] [26] Liu J, Wang Y J, Liang X H 2013 Chin. J. Comput. Mech. 30 699 (in Chinese) [刘军, 王言金, 粱仙红 2013 计算力学学报 30 699]
[27] Strang G 1968 J. Numer. Anal. 5 506
[28] [29] Li D Y, Xu G R, Shui H S, He G Y, Chen G N, Yuan G X 1998 Numerical Simulation Method of 2D-Unsteady Fluid Flow (Beijing: Science Press) p112 (in Chinese) [李德元, 徐国荣, 水鸿寿, 何高玉, 陈光南, 袁国兴 1998 二维非定常流体力学数值方法(北京: 科学出版社)第112页]
[30] [31] Liu J, Feng Q J, He C J 2008 MOF interface reconstruction method and application GF-A 0114788 (in Chinese) [刘军, 冯其京, 何长江 2008 MOF界面重构方法及应用中国国防科学技术报告GF-A 0114788]
[32] [33] [34] Li W X 2003 One dimensional unsteady flow and shock wave (Beijing: National Defence Industry Press) p40 (in Chinese) [李维新2003一维不定常流与冲击波(北京: 国防工业出版社)第40页]
[35] Steinberg D J 1996 Equation of State and Strength Properties of Selected Materials UCRL-MA-106439
计量
- 文章访问数: 6377
- PDF下载量: 638
- 被引次数: 0