搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液氮冲击中锑化铟焦平面探测器形变研究

张晓玲 孟庆端 张立文 耿东峰 吕衍秋

引用本文:
Citation:

液氮冲击中锑化铟焦平面探测器形变研究

张晓玲, 孟庆端, 张立文, 耿东峰, 吕衍秋

Deformation modeling of InSb IRFPAs under liquid nitrogen shock

Zhang Xiao-Ling, Meng Qing-Duan, Zhang Li-Wen, Geng Dong-Feng, Lü Yan-Qiu
PDF
导出引用
  • 液氮冲击中锑化铟红外焦平面探测器(InSb IRFPAs)的形变研究对理解探测器结构设计可靠性、预测探测器耐冲击寿命具有重要意义. 在系统分析液氮冲击结束时模拟得到的InSb IRFPAs形变分布与方向的基础上,提出了降温过程中累积热应变完全弛豫的设想,升至室温后的模拟结果重现了室温下拍摄的InSb IRFPAs典型形变分布特征. 经分析认为室温下拍摄的InSb IRFPAs表面屈曲变形源于底充胶固化中引入的残余应力应变,变形幅度随降温过程逐步减弱,至77 K时完全消失,升温过程则依据弹性变形规律复现典型棋盘格屈曲模式. 这为后续InSb IRFPAs结构设计、优化及耐冲击寿命预测提供了理论分析基础.
    The deformation appearing in InSb infrared focal plane arrays (IRFPAs) as subjected to liquid nitrogen shock tests, is an important criterion to assess the reliability of the structure designed and to predict the number of thermal cycling after which no cracks appear in InSb IRFPAs. After analyzing both the deformation distribution and the deformation running directions appearing in InSb IRFPAs at 77 K, we assume that the thermal strain accumulated in the liquid nitrogen shock test is completely relaxed. Based on this assumption and according to the temperature rising curve, we may obtain the deformation distribution in InSb IRFPAs at room temperature, which is identical in the deformation charactristics to the photograph of InSb IRFPAs taken at room temperature. After comparing the simulated liquid nitrogen shock tests (which InSb IRFPAs experience), with its fabrication process, we can infer that the square checkerboard buckling pattern appearing in the top surface of InSb IRFPAs originates from the residual stress and strain generated in the process of insufficient cures. And the deformation amplitude decreases with decreasing temperature of InSb IRFPAs in the nitrogen liquid shock tests. At 77 K, the deformation amplitude reduces to zero. This state corresponds to our assumption, that the accumulated stress and strain disappears. When the temperature of InSb IRFPAs increases from 77 K to room temperature, the square checkerboard buckling pattern will reappear in the top surface of InSb IRFPAs. These findings are beneficial to the optimization of the structure of InSb IRFPAs and to the improvement of the number of thermal cycling experienced by InSb IRFPA without cracks generated from liquid nitrogen shock tests.
    • 基金项目: 国家自然科学基金青年科学基金(批准号:61107083,61205090)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No.61107083, 61205090).
    [1]

    Zhou P, Li C F, Liao C J, Wei Z J, Yuan S Q 2011 Chin. Phys. B 20 028502

    [2]
    [3]
    [4]

    Huo Y H, Ma W Q, Zhang Y H, Huang J L, Wei Y, Cui K, Chen L H 2011 Acta Phys. Sin. 60 098401 (in Chinese) [霍永恒, 马文全, 张艳华, 黄建亮, 卫炀, 崔凯, 陈良惠 2011 物理学报 60 098401]

    [5]

    Xiong D Y, Li N, Li Z F, Zhen H L, Lu W 2007 Chin. Phys. Lett. 24 1403

    [6]
    [7]

    Hu W D, Chen X S, Ye Z H, Feng A L, Yin F, Zhang B, Liao L, Lu W 2013 IEEE J. Sel. Top. Quantum Electro. 19 4100107

    [8]
    [9]

    Hu W D, Chen X S, Ye Z H, Lu W 2011 Appl. Phys. Lett. 99 091101

    [10]
    [11]
    [12]

    Hoffman A W, Corrales E, Love P J, Rosbecka J, Merrill M 2004 Proceedings of SPIE, Glasgow, Scotland, United Kingdom, June 21-22, 2004 p59

    [13]
    [14]

    Dorn R J, Finger G, Huster G, Lizon J L, Mehrgan H, Meyer M, Stegmeier J, Moorwood A F M 2002 Eur. Southern Observatory 1 1

    [15]
    [16]

    Meng Q D, Zhang X L, Zhang L W, Lü Y Q 2012 Acta Phys. Sin. 61 190701 (in Chinese) [孟庆端, 张晓玲, 张立文, 吕衍秋 2012 物理学报 61 190701]

    [17]
    [18]

    Zhang X L, Meng Q D, Yu Q, Zhang L W, Lü Y Q 2013 J. Mech. Sci. Technol. 27 1809

    [19]
    [20]
    [21]

    Jiang Y T, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Technol. 45 143

    [22]

    Chang R W, Patrick M F 2009 J. Electron. Mater. 38 1855

    [23]
    [24]

    He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochimica Acta 357–358 1

    [25]
    [26]
    [27]

    Pandolfi A, Weinberg K 2011 Eng. Fract. Mech. 78 2052

    [28]

    Meng Q D, Yu Q, Zhang L W, Lü Y Q 2012 Acta Phys. Sin. 61 226103 (in Chinese) [孟庆端, 余倩, 张立文, 吕衍秋 2012 物理学报 61 226103]

    [29]
    [30]

    Nawab Y, Tardif X, Boyard N, Sobotka V, Casari P, Jacquemin F 2012 Compos. Sci. Technol. 73 81

    [31]
    [32]

    Merzlyakov M, McKenna G B, Simon S L 2006 Compos. Part A 37 585

    [33]
    [34]

    Zhao L G, Warrior N A, Long A C 2007 Mater. Sci. Eng. A 452–453 483

  • [1]

    Zhou P, Li C F, Liao C J, Wei Z J, Yuan S Q 2011 Chin. Phys. B 20 028502

    [2]
    [3]
    [4]

    Huo Y H, Ma W Q, Zhang Y H, Huang J L, Wei Y, Cui K, Chen L H 2011 Acta Phys. Sin. 60 098401 (in Chinese) [霍永恒, 马文全, 张艳华, 黄建亮, 卫炀, 崔凯, 陈良惠 2011 物理学报 60 098401]

    [5]

    Xiong D Y, Li N, Li Z F, Zhen H L, Lu W 2007 Chin. Phys. Lett. 24 1403

    [6]
    [7]

    Hu W D, Chen X S, Ye Z H, Feng A L, Yin F, Zhang B, Liao L, Lu W 2013 IEEE J. Sel. Top. Quantum Electro. 19 4100107

    [8]
    [9]

    Hu W D, Chen X S, Ye Z H, Lu W 2011 Appl. Phys. Lett. 99 091101

    [10]
    [11]
    [12]

    Hoffman A W, Corrales E, Love P J, Rosbecka J, Merrill M 2004 Proceedings of SPIE, Glasgow, Scotland, United Kingdom, June 21-22, 2004 p59

    [13]
    [14]

    Dorn R J, Finger G, Huster G, Lizon J L, Mehrgan H, Meyer M, Stegmeier J, Moorwood A F M 2002 Eur. Southern Observatory 1 1

    [15]
    [16]

    Meng Q D, Zhang X L, Zhang L W, Lü Y Q 2012 Acta Phys. Sin. 61 190701 (in Chinese) [孟庆端, 张晓玲, 张立文, 吕衍秋 2012 物理学报 61 190701]

    [17]
    [18]

    Zhang X L, Meng Q D, Yu Q, Zhang L W, Lü Y Q 2013 J. Mech. Sci. Technol. 27 1809

    [19]
    [20]
    [21]

    Jiang Y T, Tsao S, O'Sullivan T, Razeghi M, Brown G J 2004 Infrared Phys. Technol. 45 143

    [22]

    Chang R W, Patrick M F 2009 J. Electron. Mater. 38 1855

    [23]
    [24]

    He Y, Moreira B E, Overson A, Nakamura S H, Bider C, Briscoe J F 2000 Thermochimica Acta 357–358 1

    [25]
    [26]
    [27]

    Pandolfi A, Weinberg K 2011 Eng. Fract. Mech. 78 2052

    [28]

    Meng Q D, Yu Q, Zhang L W, Lü Y Q 2012 Acta Phys. Sin. 61 226103 (in Chinese) [孟庆端, 余倩, 张立文, 吕衍秋 2012 物理学报 61 226103]

    [29]
    [30]

    Nawab Y, Tardif X, Boyard N, Sobotka V, Casari P, Jacquemin F 2012 Compos. Sci. Technol. 73 81

    [31]
    [32]

    Merzlyakov M, McKenna G B, Simon S L 2006 Compos. Part A 37 585

    [33]
    [34]

    Zhao L G, Warrior N A, Long A C 2007 Mater. Sci. Eng. A 452–453 483

  • [1] 曹宇, 刘超颖, 赵耀, 那艳玲, 江崇旭, 王长刚, 周静, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化. 物理学报, 2022, 71(3): 038802. doi: 10.7498/aps.71.20211525
    [2] 曹宇, 王长刚, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211525
    [3] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [4] 姜伟, 赵欢, 汪国崔, 王新柯, 韩鹏, 孙文峰, 叶佳声, 冯胜飞, 张岩. 应用太赫兹焦平面成像方法研究氧化镁晶体在太赫兹波段的双折射特性. 物理学报, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [5] 曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静. 硒化锑薄膜太阳电池的模拟与结构优化研究. 物理学报, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [6] 张晓玲, 司乐飞, 孟庆端, 吕衍秋, 司俊杰. 考虑底充胶固化过程的InSb面阵探测器结构分析模型. 物理学报, 2017, 66(1): 016102. doi: 10.7498/aps.66.016102
    [7] 谷文浩, 常胜江, 范飞, 张选洲. 基于锑化铟亚波长阵列结构的太赫兹聚焦器件. 物理学报, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [8] 孟庆端, 余倩, 张立文, 吕衍秋. InSb面阵探测器法线方向力学参数选取研究. 物理学报, 2012, 61(22): 226103. doi: 10.7498/aps.61.226103
    [9] 孟庆端, 张晓玲, 张立文, 吕衍秋. 128× 128 InSb探测器结构模型研究. 物理学报, 2012, 61(19): 190701. doi: 10.7498/aps.61.190701
    [10] 王利, 毕思文, 王果果. 利用三平面腔镜共焦腔产生多模压缩光束. 物理学报, 2010, 59(1): 87-91. doi: 10.7498/aps.59.87
    [11] 乔 辉, 廖 毅, 胡伟达, 邓 屹, 袁永刚, 张勤耀, 李向阳, 龚海梅. 碲镉汞焦平面光伏器件的实时γ辐照效应研究. 物理学报, 2008, 57(11): 7088-7093. doi: 10.7498/aps.57.7088
    [12] 俞振中, 金刚, 陈新强, 马可军. 锑化铟单晶中杂质的反常分凝. 物理学报, 1980, 29(1): 19-24. doi: 10.7498/aps.29.19
    [13] 俞振中, 金刚, 陈新强, 马可军. 锑化铟单晶的小平面生长及孪晶. 物理学报, 1980, 29(1): 11-18. doi: 10.7498/aps.29.11
    [14] 王国文, 包燕鹏, 曹金瑞, 张光勇. 平面应力对氧化亚铜晶体四个激子线系的影响. 物理学报, 1966, 22(7): 743-748. doi: 10.7498/aps.22.743
    [15] 吴自强, 汤定元. p型锑化铟中的噪声. 物理学报, 1966, 22(2): 205-213. doi: 10.7498/aps.22.205
    [16] 徐鸿达, 林兰英. 锑化铟的热处理. 物理学报, 1966, 22(6): 698-707. doi: 10.7498/aps.22.698
    [17] 黄启圣, 汤定元. 锑化铟中载流子的复合过程. 物理学报, 1965, 21(5): 1038-1048. doi: 10.7498/aps.21.1038
    [18] 萧楠, 刘益焕. 锗、硅、锑化铟和砷化镓的热膨涨——用X射线衍射法测量. 物理学报, 1964, 20(8): 699-704. doi: 10.7498/aps.20.699
    [19] 林蘭英, 徐鸿达. 锑化铟的机械损伤. 物理学报, 1964, 20(12): 1268-1277. doi: 10.7498/aps.20.1268
    [20] 赵晓峰, 陈式刚, 蒋月明. 锑与铟的解析原子波函数. 物理学报, 1962, 18(3): 175-176. doi: 10.7498/aps.18.175
计量
  • 文章访问数:  5771
  • PDF下载量:  509
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-12
  • 修回日期:  2014-04-09
  • 刊出日期:  2014-08-05

/

返回文章
返回