搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

密度扰动的类Richtmyer-Meshkov不稳定性增长及其与无扰动界面耦合的数值模拟

孙贝贝 叶文华 张维岩

引用本文:
Citation:

密度扰动的类Richtmyer-Meshkov不稳定性增长及其与无扰动界面耦合的数值模拟

孙贝贝, 叶文华, 张维岩

Numerical simulation study on growth of Richtmyer-Meshkov-like instability of density perturbation and its coupling with unperturbed interfaces

Sun Bei-Bei, Ye Wen-Hua, Zhang Wei-Yan
PDF
HTML
导出引用
  • 靶丸材料内部扰动在冲击波作用后会产生类似Richtmyer-Meshkov (RM)不稳定性的增长并耦合到烧蚀面产生扰动种子. 本文使用数值模拟的方法研究了这种类RM不稳定性增长规律以及不稳定性与界面的耦合机制. 研究表明, 线性阶段密度扰动类RM不稳定性增长速度满足$\text{δ}v \propto k_y \Delta u\eta$. 密度扰动到界面的耦合有声波耦合和涡合并两种机制, 声波耦合引起的界面扰动增长速度满足$\text{δ}v_i/(k_y\Delta u\eta) \propto {{\text{e}}^{ - {k_y}L}} $. 界面上的Atwood数为正时, 界面上涡量和密度扰动的涡量方向相同, 涡合并导致扰动速度增大. Atwood数为正时, 降低界面上的Atwood数以及增大界面上过渡层的宽度均可减小密度扰动耦合引起的界面扰动增长.
    The interaction between the shock and the internal density perturbation of the target material produces a Richtmyer-Meshkov-like (RM-like) instability, which couples with the ablation front and generates instability seeds. Recent studies have demonstrated the significance of internal material density perturbations to implosion performance. This paper presents a two-dimensional numerical investigation of the growth of the RM-like instability in linear region and its coupling mechanism with the interface. Euler equations in two dimensions are solved in Cartesian coordinates by using the fifth-order WENO scheme in space and the two-step Runge-Kutta scheme in time. The computational domain has a length of 200 μm in the x-direction and λy in the y-direction. The numerical resolution adopted in this paper is $ {\Delta _x} = {\Delta _y} = {\lambda _y}/128 $. A periodic boundary condition is used in the y-direction, while an outflow boundary condition is used in the x-direction. The interaction between shock and density perturbation will deposit vorticity in the density perturbation region. The width of the density perturbation region can be represented by the width of the vortex pair. The growth rate of the RM-like instability can be represented by the growth rate of the width of the density-disturbed region or the maximum perturbation velocity in the y-direction. The simulation results show that the growth rate of the vortex pair width is proportional to the perturbation wave number ky, the perturbation amplitude η, and the velocity difference before and after the shock wave Δu, specifically, δvkyΔ. In the problem of coupling the RM-like instability with the interface, we calculate the derivation of the interface perturbation amplitude with respect to time to obtain the growth rate of the interface. It is concluded from the simulations that the coupling of the RM-like instability with the interface has two mechanisms: acoustic coupling and vortex merging. When the density perturbation region is far from the interface, only acoustic wave is coupled with the interface. The dimensionless growth rate of interface perturbation caused by acoustic coupling decays exponentially with kyL, δvi/(kyΔ)∝$ {{\text{e}}^{ - {k_y}L}} $. When the density perturbation region is closer to the interface, acoustic coupling and vortex merging work together. The vortex merging leads to an increase in the perturbation velocity when the Atwood number of the interface is positive. When the Atwood number is positive, reducing the Atwood number at the interface and increasing the width of the transition layer at the interface can both reduce the growth of interface perturbation caused by the RM-like instability coupling.
      通信作者: 孙贝贝, s19930816@sina.com
    • 基金项目: 国家自然科学基金(批准号: 11675026, 11575033)资助的课题.
      Corresponding author: Sun Bei-Bei, s19930816@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675026, 11575033).
    [1]

    Craxton R S, Anderson K S, Roehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty M C, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501Google Scholar

    [2]

    Goncharov V N, Regan S P, Campbell E M, Sangster T C, Radha P B, Myatt J F, Froula D H, Betti R, Boehly T R, Delettrez J A, Edgell D H, Epstein R, Forrest C J, Yu Glebov V, Harding D R, Hu S X, Igumenshchev I V, Marshall F J, McCrory R L, Michel D T, Seka W, Shvydky A, Stoeckl C, Theobald W, Gatu-Johnson M 2017 Plasma Phys. Control. Fusion 59 014008Google Scholar

    [3]

    Campbell E M, Sangster T C, Goncharov V N, Zuegel J D, Morse S F B, Sorce C, Collins G W, Wei M S, Betti R, Regan S P, et al. 2021 Phil. Trans. R. Soc. A 379 20200011Google Scholar

    [4]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [5]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Oxford University Press) pp198–252

    [6]

    Zhou C D, Betti R 2007 Phys. Plasmas 14 072703Google Scholar

    [7]

    Rayleigh L 1883 Proc. London Math. Soc. s1 170Google Scholar

    [8]

    Taylor G 1950 Proc. R. Soc. London: Ser. A 201 192Google Scholar

    [9]

    Lindl J D, Mead W C 1975 Phys. Rev. Lett. 34 1273Google Scholar

    [10]

    Takabe H, Mima K, Montierth L, Morse R L 1985 Phys. Fluids 28 3676Google Scholar

    [11]

    Igumenshchev I V, Velikovich A L, Goncharov V N, Betti R, Campbell E M, Knauer J P, Regan S P, Schmitt A J, Shah R C, Shvydky A 2019 Phys. Rev. Lett. 123 065001Google Scholar

    [12]

    Peterson J L, Clark D S, Masse L P, Suter L J 2014 Phys. Plasmas 21 092710Google Scholar

    [13]

    Miller S C, Goncharov V N 2022 Phys. Plasmas 29 082701Google Scholar

    [14]

    Harding D R, Shmayda W T 2013 Fusion Sci. Technol. 63 125Google Scholar

    [15]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar

    [16]

    Meshkov E E 1969 Fluid Dyn. 4 101Google Scholar

    [17]

    Wouchuk J G, Nishihara K 1997 Phys. Plasmas 4 1028Google Scholar

    [18]

    Wouchuk J G 2001 Phys. Rev. E 63 056303Google Scholar

    [19]

    Wouchuk J G 2001 Phys. Plasmas 8 2890Google Scholar

    [20]

    Campos F C, Wouchuk J G 2016 Phys. Rev. E 93 053111Google Scholar

    [21]

    Campos F C, Wouchuk J G 2017 Phys. Rev. E 96 013102Google Scholar

    [22]

    Pickworth L A, Hammel B A, Smalyuk V A, Robey H F, Benedetti L R, Berzak Hopkins L, Bradley D K, Field J E, Haan S W, Hatarik R, Hartouni E, Izumi N, Johnson S, Khan S, Lahmann B, Landen O L, Le Pape S, MacPhee A G, Meezan N B, Milovich J, Nagel S R, Nikroo A, Pak A E, Petrasso R, Remington B A, Rice N G, Springer P T, Stadermann M, Widmann K, Hsing W 2018 Phys. Plasmas 25 054502Google Scholar

    [23]

    Collins T J B, Stoeckl C, Epstein R, Bittle W A, Forrest C J, Glebov V Y, Goncharov V N, Harding D R, Hu S X, Jacobs-Perkins D W, Kosc T Z, Marozas J A, Mileham C, Marshall F J 2022 Phys. Plasmas 29 012703Google Scholar

    [24]

    Haines B M, Olson R E, Sweet W, Yi S A, Zylstra A B, Bradley P A, Elsner F, Huang H, Jimenez R, Kline J L, Kong C, Kyrala G A, Leeper R J, Paguio R, Pajoom S, Peterson R R, Ratledge M, Rice N 2019 Phys. Plasmas 26 012707Google Scholar

    [25]

    Haines B M, Sauppe J P, Albright B J, Daughton W S, Finnegan S M, Kline J L, Smidt J M 2022 Phys. Plasmas 29 042704Google Scholar

    [26]

    Liu Y X, Chen Z, Wang L F, Li Z Y, Wu J F, Ye W H, Li Y J 2023 Phys. Plasmas 30 042704Google Scholar

    [27]

    Li Z Y, Wang L F, Wu J F, Ye W H 2020 Acta Mech. Sin. 36 789Google Scholar

    [28]

    Sano T, Ishigure K, Campos F C 2020 Phys. Rev. E 102 013203Google Scholar

    [29]

    Goncharov V N 1999 Phys. Rev. Lett. 82 2091Google Scholar

    [30]

    Goncharov V N, Gotchev O V, Vianello E, Boehly T R, Knauer J P, McKenty P W, Radha P B, Regan S P, Sangster T C, Skupsky S, Smalyuk V A, Betti R, McCrory R L, Meyerhofer D D, Cherfils-Clérouin C 2006 Phys. Plasmas 13 012702Google Scholar

    [31]

    Mikaelian K O 1985 Phys. Rev. A 31 410Google Scholar

    [32]

    Mikaelian K O 1983 Phys. Rev. A 28 1637Google Scholar

  • 图 1  数值模拟初始设置示意图

    Fig. 1.  Schematics of the initial configuration.

    图 2  算例SPI1在1 ns (a)和3 ns (b)时的涡量场. 蓝色圈起部分为密度扰动区域, 红色虚线标注了冲击波位置

    Fig. 2.  Contour of vorticity at 1 ns (a) and 3 ns (b) of case SPI1. Blue circled part is the density perturbation region, and the red dashed line indicates the position of the shock.

    图 3  算例SPI1的涡对宽度(a)和y方向最大扰动速度(b)随时间的变化

    Fig. 3.  Time histories of the width of the vortex pair (a) and the maximum tangential velocity (b) of case SPI1.

    图 4  密度扰动宽度增长速度δvkyΔ的变化

    Fig. 4.  Curve of density perturbation width growth rate δv versus kyΔ.

    图 5  类RM不稳定性与界面耦合问题的密度云图, 此算例中的物理参数为Ma = 9.5, η = 0.3, λy = 20 μm, At = 0.77

    Fig. 5.  Contour of density of the RM-like instability and interface coupling problem, the physical parameters in this case are Ma = 9.5, η = 0.3, λy = 20 μm, At = 0.77.

    图 6  y方向扰动速度云图 (a) L = 5.53 μm; (b) L = 3.53 μm; (c) L = 1.53 μm. 物理参数Ma = 9.5, η = 0.05, λy = 20 μm, At = 0.77

    Fig. 6.  Contour of the y-component of the perturbation velocity: (a) L = 5.53 μm; (b) L = 3.53 μm; (c) L = 1.53 μm. Physical parameters: Ma = 9.5, η = 0.05, λy = 20 μm, At = 0.77.

    图 7  不同L时, 界面扰动幅值随时间的变化 (a) λy = 20 μm; (b) λy = 40 μm.

    Fig. 7.  Variation of interface perturbation amplitudes with time for different L: (a) λy = 20 μm; (b) λy = 40 μm.

    图 8  界面扰动增长速度δvi/(kyΔ)随$ {{\text{e}}^{ - {k_y}L}} $的变化

    Fig. 8.  Curve of the interface disturbance growth rate δvi/(kyΔ) versus $ {{\text{e}}^{ - {k_y}L}} $.

    图 9  不同界面Atwood数时, 界面扰动幅值随时间的变化

    Fig. 9.  Time evolution of interface perturbation amplitude at different Atwood numbers.

    图 10  不同界面过渡层宽度时, 界面扰动幅值随时间的变化

    Fig. 10.  Time evolution of interface perturbation amplitude with different density transition layer

    表 1  不同算例的参数设置

    Table 1.  Initial physical parameters in different cases.

    算例 SPI1 SPI2 SPI3 SPI4 SPI5 SPI6 SPI7 SPI8 SPI9 SPI10 SPI11 SPI12
    η 0.1 0.1 0.1 0.1 0.05 0.2 0.3 0.4 0.1 0.1 0.1 0.1
    Ma M0 M0 M0 M0 M0 M0 M0 M0 M0/8 M0/2 1.5M0 2.0M0
    λy/μm 20 40 60 80 20 20 20 20 20 20 20 20
    kyΔ 0.037 0.019 0.012 0.009 0.019 0.075 0.11 0.15 0.0014 0.018 0.056 0.075
    下载: 导出CSV
  • [1]

    Craxton R S, Anderson K S, Roehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty M C, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501Google Scholar

    [2]

    Goncharov V N, Regan S P, Campbell E M, Sangster T C, Radha P B, Myatt J F, Froula D H, Betti R, Boehly T R, Delettrez J A, Edgell D H, Epstein R, Forrest C J, Yu Glebov V, Harding D R, Hu S X, Igumenshchev I V, Marshall F J, McCrory R L, Michel D T, Seka W, Shvydky A, Stoeckl C, Theobald W, Gatu-Johnson M 2017 Plasma Phys. Control. Fusion 59 014008Google Scholar

    [3]

    Campbell E M, Sangster T C, Goncharov V N, Zuegel J D, Morse S F B, Sorce C, Collins G W, Wei M S, Betti R, Regan S P, et al. 2021 Phil. Trans. R. Soc. A 379 20200011Google Scholar

    [4]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [5]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Oxford University Press) pp198–252

    [6]

    Zhou C D, Betti R 2007 Phys. Plasmas 14 072703Google Scholar

    [7]

    Rayleigh L 1883 Proc. London Math. Soc. s1 170Google Scholar

    [8]

    Taylor G 1950 Proc. R. Soc. London: Ser. A 201 192Google Scholar

    [9]

    Lindl J D, Mead W C 1975 Phys. Rev. Lett. 34 1273Google Scholar

    [10]

    Takabe H, Mima K, Montierth L, Morse R L 1985 Phys. Fluids 28 3676Google Scholar

    [11]

    Igumenshchev I V, Velikovich A L, Goncharov V N, Betti R, Campbell E M, Knauer J P, Regan S P, Schmitt A J, Shah R C, Shvydky A 2019 Phys. Rev. Lett. 123 065001Google Scholar

    [12]

    Peterson J L, Clark D S, Masse L P, Suter L J 2014 Phys. Plasmas 21 092710Google Scholar

    [13]

    Miller S C, Goncharov V N 2022 Phys. Plasmas 29 082701Google Scholar

    [14]

    Harding D R, Shmayda W T 2013 Fusion Sci. Technol. 63 125Google Scholar

    [15]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar

    [16]

    Meshkov E E 1969 Fluid Dyn. 4 101Google Scholar

    [17]

    Wouchuk J G, Nishihara K 1997 Phys. Plasmas 4 1028Google Scholar

    [18]

    Wouchuk J G 2001 Phys. Rev. E 63 056303Google Scholar

    [19]

    Wouchuk J G 2001 Phys. Plasmas 8 2890Google Scholar

    [20]

    Campos F C, Wouchuk J G 2016 Phys. Rev. E 93 053111Google Scholar

    [21]

    Campos F C, Wouchuk J G 2017 Phys. Rev. E 96 013102Google Scholar

    [22]

    Pickworth L A, Hammel B A, Smalyuk V A, Robey H F, Benedetti L R, Berzak Hopkins L, Bradley D K, Field J E, Haan S W, Hatarik R, Hartouni E, Izumi N, Johnson S, Khan S, Lahmann B, Landen O L, Le Pape S, MacPhee A G, Meezan N B, Milovich J, Nagel S R, Nikroo A, Pak A E, Petrasso R, Remington B A, Rice N G, Springer P T, Stadermann M, Widmann K, Hsing W 2018 Phys. Plasmas 25 054502Google Scholar

    [23]

    Collins T J B, Stoeckl C, Epstein R, Bittle W A, Forrest C J, Glebov V Y, Goncharov V N, Harding D R, Hu S X, Jacobs-Perkins D W, Kosc T Z, Marozas J A, Mileham C, Marshall F J 2022 Phys. Plasmas 29 012703Google Scholar

    [24]

    Haines B M, Olson R E, Sweet W, Yi S A, Zylstra A B, Bradley P A, Elsner F, Huang H, Jimenez R, Kline J L, Kong C, Kyrala G A, Leeper R J, Paguio R, Pajoom S, Peterson R R, Ratledge M, Rice N 2019 Phys. Plasmas 26 012707Google Scholar

    [25]

    Haines B M, Sauppe J P, Albright B J, Daughton W S, Finnegan S M, Kline J L, Smidt J M 2022 Phys. Plasmas 29 042704Google Scholar

    [26]

    Liu Y X, Chen Z, Wang L F, Li Z Y, Wu J F, Ye W H, Li Y J 2023 Phys. Plasmas 30 042704Google Scholar

    [27]

    Li Z Y, Wang L F, Wu J F, Ye W H 2020 Acta Mech. Sin. 36 789Google Scholar

    [28]

    Sano T, Ishigure K, Campos F C 2020 Phys. Rev. E 102 013203Google Scholar

    [29]

    Goncharov V N 1999 Phys. Rev. Lett. 82 2091Google Scholar

    [30]

    Goncharov V N, Gotchev O V, Vianello E, Boehly T R, Knauer J P, McKenty P W, Radha P B, Regan S P, Sangster T C, Skupsky S, Smalyuk V A, Betti R, McCrory R L, Meyerhofer D D, Cherfils-Clérouin C 2006 Phys. Plasmas 13 012702Google Scholar

    [31]

    Mikaelian K O 1985 Phys. Rev. A 31 410Google Scholar

    [32]

    Mikaelian K O 1983 Phys. Rev. A 28 1637Google Scholar

  • [1] 刘庆康, 张旭, 蔡洪波, 张恩浩, 高妍琦, 朱少平. 强度调制宽带激光对受激拉曼散射动理学爆发的抑制. 物理学报, 2024, 73(5): 055202. doi: 10.7498/aps.73.20231679
    [2] 税敏, 于明海, 储根柏, 席涛, 范伟, 赵永强, 辛建婷, 何卫华, 谷渝秋. 激光加载下金属锡材料微喷颗粒与低密度泡沫混合实验研究. 物理学报, 2019, 68(7): 076201. doi: 10.7498/aps.68.20182280
    [3] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法. 物理学报, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [4] 李宏勋, 张锐, 朱娜, 田小程, 许党朋, 周丹丹, 宗兆玉, 范孟秋, 谢亮华, 郑天然, 李钊历. 基于光束参量优化实现直接驱动靶丸均匀辐照. 物理学报, 2017, 66(10): 105202. doi: 10.7498/aps.66.105202
    [5] 邓学伟, 周维, 袁强, 代万俊, 胡东霞, 朱启华, 景峰. 甚多束激光直接驱动靶面辐照均匀性研究. 物理学报, 2015, 64(19): 195203. doi: 10.7498/aps.64.195203
    [6] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究. 物理学报, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [7] 景龙飞, 黄天晅, 江少恩, 陈伯伦, 蒲昱东, 胡峰, 程书博. 神光-Ⅱ和神光-Ⅲ原型内爆对称性实验的模型分析. 物理学报, 2012, 61(10): 105205. doi: 10.7498/aps.61.105205
    [8] 宋天明, 易荣清, 崔延莉, 于瑞珍, 杨家敏, 朱托, 侯立飞, 杜华冰. ICF实验软X射线能谱仪对辐射能流时间关联测量的时标系统. 物理学报, 2012, 61(7): 075208. doi: 10.7498/aps.61.075208
    [9] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断. 物理学报, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [10] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展. 物理学报, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [11] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [12] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究. 物理学报, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [13] 张锐, 王建军, 粟敬钦, 刘兰琴, 丁磊, 唐军, 刘华, 景峰, 张小民. 基于波导相位调制器的光谱色散平滑技术实验研究. 物理学报, 2010, 59(9): 6290-6298. doi: 10.7498/aps.59.6290
    [14] 张锐, 王建军, 粟敬钦, 刘兰琴, 邓青华. 基于线性调频脉冲的光谱色散平滑技术实验研究. 物理学报, 2010, 59(2): 1088-1094. doi: 10.7498/aps.59.1088
    [15] 程文雍, 张小民, 粟敬钦, 赵圣之, 董军, 李平, 周丽丹. 利用运动光束抑制高功率激光小尺度自聚焦. 物理学报, 2009, 58(10): 7012-7016. doi: 10.7498/aps.58.7012
    [16] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究. 物理学报, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [17] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究. 物理学报, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [18] 姚 欣, 高福华, 李剑峰, 张怡霄, 温圣林, 郭永康. 光束取样光栅强激光近场调制及诱导损伤研究. 物理学报, 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [19] 姚 欣, 高福华, 温圣林, 张怡霄, 李剑峰, 郭永康. 谐波分离和光束取样集成光学元件强激光近场调制及损伤特性研究. 物理学报, 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [20] 杨洪琼, 杨建伦, 温树槐, 王根兴, 郭玉芝, 唐正元, 牟维兵, 马驰. 激光直接驱动内爆DT燃料面密度诊断. 物理学报, 2001, 50(12): 2408-2412. doi: 10.7498/aps.50.2408
计量
  • 文章访问数:  2793
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-02
  • 修回日期:  2023-08-18
  • 上网日期:  2023-08-19
  • 刊出日期:  2023-10-05

/

返回文章
返回