搜索

x
中国物理学会期刊

经典瑞利-泰勒不稳定性界面变形演化的改进型薄层模型

CSTR: 32037.14.aps.67.20172613

Improved thin layer model of classical Rayleigh-Taylor instability for the deformation of interface

CSTR: 32037.14.aps.67.20172613
PDF
导出引用
  • 激光惯性约束聚变(ICF)内爆靶丸通常采用多壳层组合结构设计,各壳层界面的流体力学不稳定性影响内爆加速和聚变点火,是ICF十分关心的问题.本文建立了描述任意Atwood数、任意初始界面分布Rayleigh-Taylor (RT)不稳定性界面变形及非线性演化的薄层模型.通过分析薄层中流体微团的受力,得到了运动微分方程组,并在二维情况进行数值求解.在线性阶段,薄层模型描述的界面演变规律与模拟结果符合很好;在非线性阶段,薄层模型可以描述至蘑菇形结构,与数值模拟的结果很接近.目前薄层的RT不稳定性非线性解析理论研究仅限于弱非线性阶段,本工作发展的薄层解析理论能很好地研究薄层非线性气泡-尖钉发展过程.

     

    The thin shell (layer) configuration is adopted in inertial-confinement fusion (ICF) implosions. The weakly nonlinear deformation of the thin shell significantly influences the performances of implosion acceleration and fusion ignition, which is an important issue for the study of ICF physics. Based on the thin layer model of Ott (Ott E 1972 Phys. Rev. Lett. 29 1429), an improved thin layer model is proposed to describe the deformation and nonlinear evolution of the perturbed interface induced by the Rayleigh-Taylor instability (RTI). Differential equations describing motion are obtained by analyzing the forces of fluid elements (i.e., Newton's second law), which are then solved by numerical method. Then the position of the perturbed interface with an initial perturbation can be obtained. The linear growth rate obtained from our thin layer approximation agrees with that from the classical RTI. For fixed Atwood number (wave number), the total amplitudes of the bubble and spike obtained from the improved thin layer model agree with those from the three-order weakly nonlinear model. In addition, we compare the deformation and evolution of the layer from our model with results of the numerical simulation. In the linear regime, the amplitudes of the bubble and spike obtained from our model agree with those from the numerical simulation. And the evolution of the perturbed interface obtained from the improved thin layer model is consistent with that from the numerical simulation. In the nonlinear regime, the evolution trends of the total amplitude of the bubble and spike for both the improved thin layer model and numerical results are the same. However, the amplitude of the bubble is obviously greater than that of the spike in the later stage of the perturbation. This is because of some shortcomings in the improved thin layer model. The first shortcoming is that ignoring the dynamical pressure in the pressure difference. In fact, the shear velocity of the fluids plays an important role in the nonlinear regime of the perturbation. The second shortcoming is that the surface area of the upper interface equals the lower interface in the whole perturbation process of the present model. Thus, the present model can be used to describe the nonlinear evolution of the perturbed interface before the mushroom structure. Finally, it is worth noting that the improved thin layer model can be used to describe the deformation and nonlinear evolution of a thin layer for arbitrary Atwood number with a perturbation of large initial amplitude and arbitrary distribution. The initial perturbations of the triangular and rectangular waves are also discussed.

     

    目录

    /

    返回文章
    返回