搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

经典瑞利-泰勒不稳定性界面变形演化的改进型薄层模型

赵凯歌 薛创 王立锋 叶文华 吴俊峰 丁永坤 张维岩 贺贤土

引用本文:
Citation:

经典瑞利-泰勒不稳定性界面变形演化的改进型薄层模型

赵凯歌, 薛创, 王立锋, 叶文华, 吴俊峰, 丁永坤, 张维岩, 贺贤土

Improved thin layer model of classical Rayleigh-Taylor instability for the deformation of interface

Zhao Kai-Ge, Xue Chuang, Wang Li-Feng, Ye Wen-Hua, Wu Jun-Feng, Ding Yong-Kun, Zhang Wei-Yan, He Xian-Tu
PDF
导出引用
  • 激光惯性约束聚变(ICF)内爆靶丸通常采用多壳层组合结构设计,各壳层界面的流体力学不稳定性影响内爆加速和聚变点火,是ICF十分关心的问题.本文建立了描述任意Atwood数、任意初始界面分布Rayleigh-Taylor (RT)不稳定性界面变形及非线性演化的薄层模型.通过分析薄层中流体微团的受力,得到了运动微分方程组,并在二维情况进行数值求解.在线性阶段,薄层模型描述的界面演变规律与模拟结果符合很好;在非线性阶段,薄层模型可以描述至蘑菇形结构,与数值模拟的结果很接近.目前薄层的RT不稳定性非线性解析理论研究仅限于弱非线性阶段,本工作发展的薄层解析理论能很好地研究薄层非线性气泡-尖钉发展过程.
    The thin shell (layer) configuration is adopted in inertial-confinement fusion (ICF) implosions. The weakly nonlinear deformation of the thin shell significantly influences the performances of implosion acceleration and fusion ignition, which is an important issue for the study of ICF physics. Based on the thin layer model of Ott (Ott E 1972 Phys. Rev. Lett. 29 1429), an improved thin layer model is proposed to describe the deformation and nonlinear evolution of the perturbed interface induced by the Rayleigh-Taylor instability (RTI). Differential equations describing motion are obtained by analyzing the forces of fluid elements (i.e., Newton's second law), which are then solved by numerical method. Then the position of the perturbed interface with an initial perturbation can be obtained. The linear growth rate obtained from our thin layer approximation agrees with that from the classical RTI. For fixed Atwood number (wave number), the total amplitudes of the bubble and spike obtained from the improved thin layer model agree with those from the three-order weakly nonlinear model. In addition, we compare the deformation and evolution of the layer from our model with results of the numerical simulation. In the linear regime, the amplitudes of the bubble and spike obtained from our model agree with those from the numerical simulation. And the evolution of the perturbed interface obtained from the improved thin layer model is consistent with that from the numerical simulation. In the nonlinear regime, the evolution trends of the total amplitude of the bubble and spike for both the improved thin layer model and numerical results are the same. However, the amplitude of the bubble is obviously greater than that of the spike in the later stage of the perturbation. This is because of some shortcomings in the improved thin layer model. The first shortcoming is that ignoring the dynamical pressure in the pressure difference. In fact, the shear velocity of the fluids plays an important role in the nonlinear regime of the perturbation. The second shortcoming is that the surface area of the upper interface equals the lower interface in the whole perturbation process of the present model. Thus, the present model can be used to describe the nonlinear evolution of the perturbed interface before the mushroom structure. Finally, it is worth noting that the improved thin layer model can be used to describe the deformation and nonlinear evolution of a thin layer for arbitrary Atwood number with a perturbation of large initial amplitude and arbitrary distribution. The initial perturbations of the triangular and rectangular waves are also discussed.
      Corresponding author: Xue Chuang, xue_chuang@iapcm.ac.cn;wang_lifeng@iapcm.ac.cn,lif_wang@pku.edu.cn ; Wang Li-Feng, xue_chuang@iapcm.ac.cn;wang_lifeng@iapcm.ac.cn,lif_wang@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675026, 11475034, 11575033), the Foundation of President of Chinese Academy of Engineering Physics (Grant No. 2014-1-040), and the National Basic Research Program of China (Grant No. 2013CB834100).
    [1]

    Wang J H 1994 Nonstationary Flow and Shock for Two-Dimensional (Beijing: Science Press) p10 (in Chinese) [王继海 1994 二维非定常流和激波 (北京:科学出版社) 第10页]

    [2]

    Rayleigh L 1893 Proc. R. Math. Soc. 14 170

    [3]

    Taylor G I 1950 Proc. R. Soc. London: Ser. A 201 192

    [4]

    Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (London: Oxford University Press) pp429-514

    [5]

    Nuckolls J H, Wood J, Thiessen A, Zimmerman G 1972 Nature 239 139

    [6]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [7]

    Atzeni S, Meyer-ter-Vehn J 2004 The physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Oxford University Press)

    [8]

    He X T, Zhang W Y 2007 Eur. Phys. J. D 44 227

    [9]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [10]

    Remington B A, Arnett D, Drake R P, Takabe H 1999 Science 284 1488

    [11]

    Committee on High Energy Density Plasma Physics Plasma Science Committee Board on Physics and Astronomy Division on Engineering and Physical Science 2001 Frontiers in High Density Physics (Washington, DC: Academic Press)

    [12]

    Vlemmings W H T, Diamond P J, Imai H 2006 Nature 440 58

    [13]

    Wang L F, Ye W H, Li Y J 2010 Phys. Plasmas 17 052305

    [14]

    Liu W H, Wang L F, Ye W H, He X T 2012 Phys. Plasmas 19 042705

    [15]

    Wang L F, Wu J F, Fan Z F, Ye W H, He X T, Zhang W Y, Dai Z S, Gu J F, Xue C 2012 Phys. Plasmas 19 112706

    [16]

    Wang L F, Ye W H, Sheng Z M, Don W S, Li Y J, He X T 2010 Phys. Plasmas 17 122706

    [17]

    Ye W H, Wang L F, He X T 2010 Phys. Plasmas 17 122704

    [18]

    Wang L F, Ye W H, He X T, Zhang W Y, Sheng Z M, Yu M Y 2012 Phys. Plasmas 19 100701

    [19]

    Wang L F, Ye W H, Wu J F, Liu J, Zhang W Y, He X T 2016 Phys. Plasmas 23 052713

    [20]

    Wang L F, Ye W H, Wu J F, Liu J, Zhang W Y, He X T 2016 Phys. Plasmas 23 122702

    [21]

    Wang L F, Ye W H, He X T, Wu J F, Fan Z F, Xue C, Guo H Y, Miao W Y, Yuan Y T, Dong J Q, Jia G, Zhang J, Li Y J, Liu J, Wang M, Ding Y K, Zhang W Y 2017 Sci. China: Phys. Mech. Astron. 60 055201

    [22]

    Zhang W Y, Ye W H, Wu J F, Miao W Y, Fan Z F, Wang L F, Gu J F, Dai Z S, Cao Z Y, Xu X W, Yuan Y T, Kang D G, Li Y S, Yu X J, Liu C L, Xue C, Zheng W D, Wang M, Pei W B, Zhu S P, Jiang S E, Liu S Y, Ding Y K, He X T 2014 Sci. Sin.: Phys. Mech. Astron. 44 1 (in Chinese) [张维岩, 叶文华, 吴俊峰, 缪文勇, 范征锋, 王立锋, 谷建法, 戴振生, 曹柱荣, 徐小文, 袁永腾, 康洞国, 李永升, 郁晓瑾, 刘长礼, 薛创, 郑无敌, 王敏, 裴文兵, 朱少平, 江少恩, 刘慎业, 丁永坤, 贺贤土 2014 中国科学: 物理学 力学 天文学 44 1]

    [23]

    Reipurth B, Bally J 2001 Annu. Rev. Astron. Astrophys. 39 403

    [24]

    Jacobs J W, Catton I 1988 J. Fluid Mech. 187 353

    [25]

    Kull H J 1991 Phys. Rep. 206 197

    [26]

    Sanz J 1994 Phys. Rev. Lett. 73 2700

    [27]

    Garnier J, Raviart P A, Cherfils-Clrouin C, Masse L 2003 Phys. Rev. Lett. 90 185003

    [28]

    Haan S W 1991 Phys. Fluids B 3 2349

    [29]

    Youngs D L 1984 Physica D 12 32

    [30]

    Zhang Y, Drake R P, Glimm J 2007 Phys. Plasmas 14 062703

    [31]

    Jacobs J W, Catton I 1988 J. Fluid Mech. 187 329

    [32]

    Waddell J T, Niederhaus C E, Jacobs J W 2001 Phys. Fluids 13 1263

    [33]

    Wilkinson J P, Jacobs J W 2007 Phys. Fluids 19 124102

    [34]

    Olson D H, Jacobs J W 2009 Phys. Fluids 21 034103

    [35]

    Wang L F, Ye W H, Li Y J 2010 Chin. Phys. Lett. 27 025203

    [36]

    Wang L F, Wu J F, Ye W H, Zhang W Y, He X T 2013 Phys. Plasmas 20 042708

    [37]

    Davies R M, Taylor G I 1950 Proc. Roy. Soc. A 200 375

    [38]

    Layzer D 1955 Astrophys. J. 122 1

    [39]

    Zhang Q 1998 Phys. Rev. Lett. 81 3391

    [40]

    Goncharov V N 2002 Phys. Rev. Lett. 88 134502

    [41]

    Sohn S 2003 Phys. Rev. E 67 026301

    [42]

    Abarzhi S I, Nishihara K, Glimm J 2003 Phys. Lett. A 317 470

    [43]

    Mikaelian K O 2003 Phys. Rev. E 67 026319

    [44]

    Tao Y S, Wang L F, Ye W H, Zhang G C, Zhang J C, Li Y J 2012 Acta Phys. Sin. 61 075207 (in Chinese) [陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏 2012 物理学报 61 075207]

    [45]

    Ott E 1972 Phys. Rev. Lett. 29 1429

    [46]

    Manheimer W, Colombant D, Ott E 1984 Phys. Fluids 27 2164

    [47]

    Colombant D, Manheimer W, Ott E 1984 Phys. Rev. Lett. 53 446

    [48]

    Wang L F, Guo H Y, Wu J F, Ye W H, Liu J, Zhang W Y, He X T 2014 Phys. Plasmas 21 122710

  • [1]

    Wang J H 1994 Nonstationary Flow and Shock for Two-Dimensional (Beijing: Science Press) p10 (in Chinese) [王继海 1994 二维非定常流和激波 (北京:科学出版社) 第10页]

    [2]

    Rayleigh L 1893 Proc. R. Math. Soc. 14 170

    [3]

    Taylor G I 1950 Proc. R. Soc. London: Ser. A 201 192

    [4]

    Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (London: Oxford University Press) pp429-514

    [5]

    Nuckolls J H, Wood J, Thiessen A, Zimmerman G 1972 Nature 239 139

    [6]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [7]

    Atzeni S, Meyer-ter-Vehn J 2004 The physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Oxford University Press)

    [8]

    He X T, Zhang W Y 2007 Eur. Phys. J. D 44 227

    [9]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [10]

    Remington B A, Arnett D, Drake R P, Takabe H 1999 Science 284 1488

    [11]

    Committee on High Energy Density Plasma Physics Plasma Science Committee Board on Physics and Astronomy Division on Engineering and Physical Science 2001 Frontiers in High Density Physics (Washington, DC: Academic Press)

    [12]

    Vlemmings W H T, Diamond P J, Imai H 2006 Nature 440 58

    [13]

    Wang L F, Ye W H, Li Y J 2010 Phys. Plasmas 17 052305

    [14]

    Liu W H, Wang L F, Ye W H, He X T 2012 Phys. Plasmas 19 042705

    [15]

    Wang L F, Wu J F, Fan Z F, Ye W H, He X T, Zhang W Y, Dai Z S, Gu J F, Xue C 2012 Phys. Plasmas 19 112706

    [16]

    Wang L F, Ye W H, Sheng Z M, Don W S, Li Y J, He X T 2010 Phys. Plasmas 17 122706

    [17]

    Ye W H, Wang L F, He X T 2010 Phys. Plasmas 17 122704

    [18]

    Wang L F, Ye W H, He X T, Zhang W Y, Sheng Z M, Yu M Y 2012 Phys. Plasmas 19 100701

    [19]

    Wang L F, Ye W H, Wu J F, Liu J, Zhang W Y, He X T 2016 Phys. Plasmas 23 052713

    [20]

    Wang L F, Ye W H, Wu J F, Liu J, Zhang W Y, He X T 2016 Phys. Plasmas 23 122702

    [21]

    Wang L F, Ye W H, He X T, Wu J F, Fan Z F, Xue C, Guo H Y, Miao W Y, Yuan Y T, Dong J Q, Jia G, Zhang J, Li Y J, Liu J, Wang M, Ding Y K, Zhang W Y 2017 Sci. China: Phys. Mech. Astron. 60 055201

    [22]

    Zhang W Y, Ye W H, Wu J F, Miao W Y, Fan Z F, Wang L F, Gu J F, Dai Z S, Cao Z Y, Xu X W, Yuan Y T, Kang D G, Li Y S, Yu X J, Liu C L, Xue C, Zheng W D, Wang M, Pei W B, Zhu S P, Jiang S E, Liu S Y, Ding Y K, He X T 2014 Sci. Sin.: Phys. Mech. Astron. 44 1 (in Chinese) [张维岩, 叶文华, 吴俊峰, 缪文勇, 范征锋, 王立锋, 谷建法, 戴振生, 曹柱荣, 徐小文, 袁永腾, 康洞国, 李永升, 郁晓瑾, 刘长礼, 薛创, 郑无敌, 王敏, 裴文兵, 朱少平, 江少恩, 刘慎业, 丁永坤, 贺贤土 2014 中国科学: 物理学 力学 天文学 44 1]

    [23]

    Reipurth B, Bally J 2001 Annu. Rev. Astron. Astrophys. 39 403

    [24]

    Jacobs J W, Catton I 1988 J. Fluid Mech. 187 353

    [25]

    Kull H J 1991 Phys. Rep. 206 197

    [26]

    Sanz J 1994 Phys. Rev. Lett. 73 2700

    [27]

    Garnier J, Raviart P A, Cherfils-Clrouin C, Masse L 2003 Phys. Rev. Lett. 90 185003

    [28]

    Haan S W 1991 Phys. Fluids B 3 2349

    [29]

    Youngs D L 1984 Physica D 12 32

    [30]

    Zhang Y, Drake R P, Glimm J 2007 Phys. Plasmas 14 062703

    [31]

    Jacobs J W, Catton I 1988 J. Fluid Mech. 187 329

    [32]

    Waddell J T, Niederhaus C E, Jacobs J W 2001 Phys. Fluids 13 1263

    [33]

    Wilkinson J P, Jacobs J W 2007 Phys. Fluids 19 124102

    [34]

    Olson D H, Jacobs J W 2009 Phys. Fluids 21 034103

    [35]

    Wang L F, Ye W H, Li Y J 2010 Chin. Phys. Lett. 27 025203

    [36]

    Wang L F, Wu J F, Ye W H, Zhang W Y, He X T 2013 Phys. Plasmas 20 042708

    [37]

    Davies R M, Taylor G I 1950 Proc. Roy. Soc. A 200 375

    [38]

    Layzer D 1955 Astrophys. J. 122 1

    [39]

    Zhang Q 1998 Phys. Rev. Lett. 81 3391

    [40]

    Goncharov V N 2002 Phys. Rev. Lett. 88 134502

    [41]

    Sohn S 2003 Phys. Rev. E 67 026301

    [42]

    Abarzhi S I, Nishihara K, Glimm J 2003 Phys. Lett. A 317 470

    [43]

    Mikaelian K O 2003 Phys. Rev. E 67 026319

    [44]

    Tao Y S, Wang L F, Ye W H, Zhang G C, Zhang J C, Li Y J 2012 Acta Phys. Sin. 61 075207 (in Chinese) [陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏 2012 物理学报 61 075207]

    [45]

    Ott E 1972 Phys. Rev. Lett. 29 1429

    [46]

    Manheimer W, Colombant D, Ott E 1984 Phys. Fluids 27 2164

    [47]

    Colombant D, Manheimer W, Ott E 1984 Phys. Rev. Lett. 53 446

    [48]

    Wang L F, Guo H Y, Wu J F, Ye W H, Liu J, Zhang W Y, He X T 2014 Phys. Plasmas 21 122710

  • [1] 孙伟, 吕冲, 雷柱, 仲佳勇. 磁场对激光驱动Rayleigh–Taylor不稳定性影响的数值研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220362
    [2] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟. 物理学报, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [3] 袁永腾, 涂绍勇, 尹传盛, 李纪伟, 戴振生, 杨正华, 侯立飞, 詹夏宇, 晏骥, 董云松, 蒲昱东, 邹士阳, 杨家敏, 缪文勇. 冲击波波后辐射效应对Richtmyer-Meshkov不稳定性增长影响的实验研究. 物理学报, 2021, 70(20): 205203. doi: 10.7498/aps.70.20210653
    [4] 黄皓伟, 梁宏, 徐江荣. 表面张力对高雷诺数Rayleigh-Taylor不稳定性后期增长的影响. 物理学报, 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [5] 段亮, 刘冲, 赵立臣, 杨战营. 基本非线性波与调制不稳定性的精确对应. 物理学报, 2020, 69(1): 010501. doi: 10.7498/aps.69.20191385
    [6] 李碧勇, 彭建祥, 谷岩, 贺红亮. 爆轰加载下高纯铜界面Rayleigh-Taylor不稳定性实验研究. 物理学报, 2020, 69(9): 094701. doi: 10.7498/aps.69.20191999
    [7] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [8] 李德梅, 赖惠林, 许爱国, 张广财, 林传栋, 甘延标. 可压流体Rayleigh-Taylor不稳定性的离散Boltzmann模拟. 物理学报, 2018, 67(8): 080501. doi: 10.7498/aps.67.20171952
    [9] 李源, 罗喜胜. 黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析. 物理学报, 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [10] 袁永腾, 王立峰, 涂绍勇, 吴俊峰, 曹柱荣, 詹夏宇, 叶文华, 刘慎业, 江少恩, 丁永坤, 缪文勇. 掺杂对CH样品Rayleigh-Taylor不稳定性增长的影响. 物理学报, 2014, 63(23): 235203. doi: 10.7498/aps.63.235203
    [11] 霍新贺, 王立锋, 陶烨晟, 李英骏. 非理想流体中Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究 . 物理学报, 2013, 62(14): 144705. doi: 10.7498/aps.62.144705
    [12] 夏同军, 董永强, 曹义刚. 界面张力对Rayleigh-Taylor不稳定性的影响. 物理学报, 2013, 62(21): 214702. doi: 10.7498/aps.62.214702
    [13] 陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏. 任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究. 物理学报, 2012, 61(7): 075207. doi: 10.7498/aps.61.075207
    [14] 王波波. 环面黑洞背景下量子场的熵. 物理学报, 2004, 53(7): 2401-2406. doi: 10.7498/aps.53.2401
    [15] 张靖仪. 一般球对称带电蒸发黑洞Dirac场的熵. 物理学报, 2003, 52(9): 2354-2358. doi: 10.7498/aps.52.2354
    [16] 孟庆苗. 静态球对称黑洞Dirac场的Stefan-Boltzmann定律. 物理学报, 2003, 52(8): 2102-2104. doi: 10.7498/aps.52.2102
    [17] 张靖仪, 赵峥. 直线加速动态黑洞Dirac场的熵. 物理学报, 2002, 51(10): 2399-2406. doi: 10.7498/aps.51.2399
    [18] 贺凯芬. 负能模式在非线性不稳定性中的作用再探. 物理学报, 1996, 45(1): 1-12. doi: 10.7498/aps.45.1
    [19] 刘金远, 宫野, 李国炳, 马腾才, 张林. 轴向磁场中线性热势模型电弧的螺旋不稳定性. 物理学报, 1996, 45(4): 608-618. doi: 10.7498/aps.45.608
    [20] 赵阳, 杨祥林. 非线性单模光纤中的调制不稳定性. 物理学报, 1989, 38(4): 541-547. doi: 10.7498/aps.38.541
计量
  • 文章访问数:  3893
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-08
  • 修回日期:  2018-02-22
  • 刊出日期:  2018-05-05

经典瑞利-泰勒不稳定性界面变形演化的改进型薄层模型

    基金项目: 国家自然科学基金(批准号:11675026,11475034,11575033)、中国工程物理研究院院长基金(批准号:2014-1-040)和国家重点基础研究计划(批准号:2013CB834100)资助的课题.

摘要: 激光惯性约束聚变(ICF)内爆靶丸通常采用多壳层组合结构设计,各壳层界面的流体力学不稳定性影响内爆加速和聚变点火,是ICF十分关心的问题.本文建立了描述任意Atwood数、任意初始界面分布Rayleigh-Taylor (RT)不稳定性界面变形及非线性演化的薄层模型.通过分析薄层中流体微团的受力,得到了运动微分方程组,并在二维情况进行数值求解.在线性阶段,薄层模型描述的界面演变规律与模拟结果符合很好;在非线性阶段,薄层模型可以描述至蘑菇形结构,与数值模拟的结果很接近.目前薄层的RT不稳定性非线性解析理论研究仅限于弱非线性阶段,本工作发展的薄层解析理论能很好地研究薄层非线性气泡-尖钉发展过程.

English Abstract

参考文献 (48)

目录

    /

    返回文章
    返回