搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击波波后辐射效应对Richtmyer-Meshkov不稳定性增长影响的实验研究

袁永腾 涂绍勇 尹传盛 李纪伟 戴振生 杨正华 侯立飞 詹夏宇 晏骥 董云松 蒲昱东 邹士阳 杨家敏 缪文勇

引用本文:
Citation:

冲击波波后辐射效应对Richtmyer-Meshkov不稳定性增长影响的实验研究

袁永腾, 涂绍勇, 尹传盛, 李纪伟, 戴振生, 杨正华, 侯立飞, 詹夏宇, 晏骥, 董云松, 蒲昱东, 邹士阳, 杨家敏, 缪文勇

Understanding effects of radiation from radiative shock on Richtmyer-Meshkov instability

Yuan Yong-Teng, Tu Shao-Yong, Yin Chuan-Sheng, Li Ji-Wei, Dai Zhen-Sheng, Yang Zheng-Hua, Hou Li-Fei, Zhan Xia-Yu, Yan Ji, Dong Yun-Song, Pu Yu-Dong, Zou Shi-Yang, Yang Jia-Min, Miao Wen-Yong
PDF
HTML
导出引用
  • 辐射冲击波波后物质具有辐射属性, 它通过扰动界面引起的Richtmyer-Meshkov(RM)不稳定性的增长有别于通常的冲击波. 在高功率激光装置上开展冲击波波后辐射效应对界面不稳定性增长影响的实验研究, 认识波后辐射对界面增长的影响过程及规律, 有助于提高高能量密度条件下RM不稳定性演化规律的认识水平及预测能力. 基于神光III原型高功率激光装置, 设计并开展了两种激光驱动条件下的界面流体力学不稳定性实验, 研究波后辐射效应对界面RM不稳定性增长的影响. 实验中在较高功率密度驱动条件下CHBr扰动样品未见明显的扰动增长, 结合模拟分析发现较高功率密度条件下辐射前驱波波阵面和冲击波波阵面明显分离, 辐射前驱波在冲击波到达扰动界面前烧蚀扰动界面, 改变了界面的初始状态, 界面不稳定性增长过程中密度梯度的增大和界面Atwood数的减小抑制了界面RM不稳定性的增长.
    Radiative shocks are ubiquitous in stellar environments and are characterized by high temperature plasma emitting a considerable fraction of their energy as radiation. Radiative shocks occur commonly in nature, especially in astronomical systems and inertial confinement fusion. The study of the effects of radiation on Richtmyer-Meshkov (RM) instability will improve our ability to understand and predict the evolution of RM instability under high energy density conditions.A few experiments have been performed to compare the radiative case with the non-radiative case in Rayleigh-Taylor (RT) instability, thereby studying how the radiative effects change the evolution of RT instability, but the interplay between RM instability and radiative shock has been studied rarely. This paper reports mainly the role of radiation in the changing of the RM instability. Two experiments are performed at Shenguang III prototype laser facility, the RM instability growth data are obtained by varying the laser intensity. The laser intensity for high-drive experiment is approximately 60% greater than that for low-drive experiment. The target consists of a multiple layer in the axial direction, in which the first layer is a 15μm-thick CH sample serving as an ablator, followed by a 10 μm-thick aluminum used as a shield layer to prevent the preheat effect. The next layer is a 350-μm-thick SiO2 foam, which is used as a material to produce a radiative shock. The last layer is the CH perturbed sample. There is a sinusoidal perturbation on the surface of CH sample which is adjacent to the SiO2 foam. The target is irradiated by four overlapping laser beams, and the laser beams produce a large pressure that drives a shock wave, whose velocity can be changed by varying the laser intensity, into the target package.In the experiments, shock-generated radiative fluxes first ablate the unstable interface which the shock has not passed through, then the shock transmits the unstable interface to produce the RM instability. The images of unstable interface are captured using side-on x-ray radiography, and the experimental results show that the RM growth is suppressed in the experiment for the higher laser intensity. Radiation hydrodynamic code Multi1D is used to evaluate the electron temperature, shock velocity, and electron density. The simulations show that the foam temperature in the high-drive case can reach 80 eV in the front of shock, this energy flows away from the shock front, generating a radiative precursor ahead of the shock. The radiative precursor velocity of 270 km/s is much larger than the shock velocity of 170 km/s, the radiative precursor arrives at the unstable interface before the shock and ablates the unstable interface, so the radiative flux changes the initial conditions of unstable interface. When the shock propagates through the unstable interface, the ablation increases the density gradient length scale and reduces the Atwood number of the unstable interface, so the RM growth is suppressed in the high-drive case because of the ablation of the radiative precursor.
      通信作者: 缪文勇, miaowenyong@sina.com
    • 基金项目: 国家自然科学基金 (批准号: 11705179, 11905205) 和科学挑战计划 (批准号: TZ2016005)资助的课题
      Corresponding author: Miao Wen-Yong, miaowenyong@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705179, 11905205) and the Science Challenge Project, China (Grant No. TZ2016005)
    [1]

    Remington B A, Drake R P, Takabe H, Arnett D 2000 Phys. Plasmas 7 1641Google Scholar

    [2]

    Remington B A, Drake R P, Ryntov D D 2006 Rev. Mod. Phys. 78 755Google Scholar

    [3]

    Kuranz C C, Park H S, Remington B A, et al. 2011 Astrophys. Space Sci. 336 207Google Scholar

    [4]

    Trantham M R, Kuranz C C, Malamud G, et al. 2013 High Energy Density Phys. 9 303Google Scholar

    [5]

    Flaig M, Plewa T, Keiter P A, Drake R P, Grosskopf M, Kuranz C, Park H S 2014 High Energy Density Phys. 12 35Google Scholar

    [6]

    Li J W, Pei W B, He X T, Li J H, Zheng W D, Zhu S P, Kang W 2013 Phys. Plasmas 20 082707Google Scholar

    [7]

    Pak A, Divol L, Gregori G, et al. 2013 Phys. Plasmas 20 056315Google Scholar

    [8]

    Reighard A B, Drake R P, Dannenberg K K, et al. 2006 Phys. Plasmas 13 082901Google Scholar

    [9]

    Stehlé C, González M, Kozlva M, et al. 2010 Laser Part. Beams 28 253Google Scholar

    [10]

    Kuranz C C, Drake R P, Huntington C M, et al. 2013 High Energy Density Phys. 9 315Google Scholar

    [11]

    Michaut C, Vinci T, Boireau L, et al. 2007 Astrophys. Space Sci. 307 159Google Scholar

    [12]

    Chaulagain U, Stehlé C, Larour J, et al. 2015 High Energy Density Phys. 17 106Google Scholar

    [13]

    Cotelo M, Velarde P, Varga A G, Portillo D, Stehlé C, Chaulagain U, Kozlova M, Larour J, Suzuki-Vidal F 2015 High Energy Density Phys. 17 68Google Scholar

    [14]

    Vinci T, Koenig M, Benuzzi-Mounaix A, Michaut C, Boireau L, Leygnac S, Bouquet S, Peyrusse O, Batani D 2006 Phys. Plasmas 13 010702Google Scholar

    [15]

    Michel T, Albertazzi B, Mabey P, Rigon G, Lefevre F, Som L, Barroso P, Egashira S, Kumar R, Michaut C, Ota M, Ozaki N, Sakawa Y, Sano T, Falize E, Koenig M 2020 Astrophys. J. 25 888

    [16]

    Keiter P A, Drake R P, Perry T S, Robey H F, Remington B A, Iglesias C A, Wallace R J 2002 Phys. Rev. Lett. 89 165003Google Scholar

    [17]

    Nilsen J, Kritcher A L, Martin M E, Tipton R E, Whitley H D, Swift D C, Döppner T, Bachmann B L, Lazicki A E, Kostinski N B, Maddox B R, Collins G W, Glenzer S H, Falcone R W 2020 Matter Radiat. Extremes 5 018401Google Scholar

    [18]

    Huntington C M, Shimony A, Trantham M, et al. 2018 Phys. Plasmas 25 052118Google Scholar

    [19]

    Kuranz C C, Park H S, Huntington C M, et al. 2018 Nat. Commun. 9 1564Google Scholar

    [20]

    庄礼贤, 尹协远, 马晖扬 2009 流体力学(合肥: 中国科学技术大学出版社) 第268页

    Zhuang L X, Yin X Y, Ma H Y 2009 Fluid Mechanics (Hefei: University of Science and Technology of China Press) p268 (in Chinese)

    [21]

    Motl B J 2008 Ph. D. Dissertation (Wisconsin: University of Wisconsin- Madison)

    [22]

    Dimonte G, Frerking C E, Schneider M, Remington B 1995 Phys. Plasmas 3 614

    [23]

    张璐, 杨家敏 2012 物理学报 61 045203Google Scholar

    Zhang L, Yang J M 2012 Acta Phys. Sin. 61 045203Google Scholar

    [24]

    Martinez D A, Smalyuk V A, MacPhee A G, et al. 2017 Phys. Plasmas 24 102707Google Scholar

    [25]

    肖德龙, 孙顺凯, 薛创, 张扬, 丁宁 2015 物理学报 64 235203Google Scholar

    Xiao D L, Sun S K, Xue C, Zhang Y, Ding L 2015 Acta Phys. Sin. 64 235203Google Scholar

    [26]

    蒙世坚, 黄展常, 甯家敏, 胡青元, 叶繁, 秦义, 许泽平, 徐荣昆 2016 物理学报 65 075201Google Scholar

    Meng S J, Huang Z C, Ning J M, Hu Q Y, Ye F, Qin Y, Xu Z P, Xu R K 2016 Acta Phys. Sin. 65 075201Google Scholar

  • 图 1  激光驱动界面不稳定性研究主靶结构示意图

    Fig. 1.  Schematic view of the hydrodynamic instability target driven by laser.

    图 2  两种泡沫材料中冲击波的运动轨迹

    Fig. 2.  Shock trajectory in two foam materials.

    图 3  界面不稳定性研究主靶CT图像

    Fig. 3.  Photo of the hydrodynamic instability target taken by CT.

    图 4  激光驱动界面不稳定性实验示意图

    Fig. 4.  Schematic of the laser driven hydrodynamic instability experiment.

    图 5  激光功率密度1 × 1015 W/cm2条件下CHBr样品的RM不稳定性增长图像

    Fig. 5.  RM growth image at a laser intensity of 1 × 1015 W/cm2.

    图 6  激光功率密度1.6 × 1015 W/cm2条件下CHBr样品的界面不稳定性增长图像

    Fig. 6.  RM growth image at a laser intensity of 1.6 × 1015 W/cm2.

    图 7  激光功率密度1 × 1015 W/cm2条件下CHBr样品阴影区X轴方向光强分布

    Fig. 7.  Horizontal lineouts of perturbation sample images at a laser intensity of 1.6 × 1015 W/cm2.

    图 8  激光功率密度1.6 × 1015 W/cm2条件下CHBr样品阴影区X轴方向光强分布

    Fig. 8.  Horizontal lineouts of perturbation sample images at a laser intensity of 1 × 1015 W/cm2.

    图 9  模拟激光功率密度1.6 × 1015 W/cm2条件下各层物质运动及冲击波、辐射前驱波阵面

    Fig. 9.  Simulated shock trajectory, radiative precursor trajectory and the movement of materials at a laser intensity of 1.6 × 1015 W/cm2.

    图 10  模拟SiO2泡沫和CHBr层电子温度变化

    Fig. 10.  One-dimensional profiles of electron temperature of SiO2 foam and CHBr.

    图 11  模拟不同时刻SiO2泡沫中电子密度和电子温度的变化 (a) 0.9 ns; (b) 2.0 ns

    Fig. 11.  Simulated one-dimensional profiles of electron temperature and electron density at different time: (a) 0.9 ns; (b) 2.0 ns.

    图 12  模拟激光功率密度1 × 1015 W/cm2条件下各层物质运动及冲击波、辐射前驱波阵面

    Fig. 12.  Simulated shock trajectory, radiative precursor trajectory and the movement of materials at a laser intensity of 1 × 1015 W/cm2.

    图 13  模拟不同时刻SiO2泡沫中电子密度和电子温度的变化 (a) 1.2 ns; (b) 2.5 ns

    Fig. 13.  Simulated electron density and electron temperature in SiO2 foam for different time: (a) 1.2 ns; (b) 2.5 ns.

    图 14  模拟激光功率密度1.6 × 1015 W/cm2条件下 (a) CHBr样品烧蚀速度, (b)界面处密度梯度标长

    Fig. 14.  Simulated (a) ablation velocity and (b) density-gradient scale length on the surface at a laser intensity of 1.6 × 1015 W/cm2.

    图 15  模拟两种激光功率密度条件下界面处密度梯度标长变化

    Fig. 15.  Simulated density-gradient scale length on the surface at the different laser intensity.

    图 16  模拟两种激光功率密度条件下扰动界面处的Atwood数变化

    Fig. 16.  Simulated Atwood number on the surface at the different laser intensity.

    表 1  激光功率密度1 × 1015 W/cm2条件下激光参数统计

    Table 1.  Laser parameters at a laser intensity of 1 × 1015 W/cm2.

    发次号记录图像
    时刻/ns
    设计能
    量/J
    实际输出
    能量/J
    实际输出能量与
    设计能量偏差/%
    057520001931–3.45
    056620001983–0.85
    054820001988–0.60
    下载: 导出CSV

    表 2  激光功率密度1.6 × 1015 W/cm2条件下激光参数统计

    Table 2.  Laser parameters at a laser intensity of 1.6 × 1015 W/cm2.

    发次号记录图像
    时刻/ns
    设计能
    量/J
    实际输出
    能量/J
    实际输出能量与
    设计能量偏差/%
    061532003080–3.75
    055832002812–12.1
    下载: 导出CSV
  • [1]

    Remington B A, Drake R P, Takabe H, Arnett D 2000 Phys. Plasmas 7 1641Google Scholar

    [2]

    Remington B A, Drake R P, Ryntov D D 2006 Rev. Mod. Phys. 78 755Google Scholar

    [3]

    Kuranz C C, Park H S, Remington B A, et al. 2011 Astrophys. Space Sci. 336 207Google Scholar

    [4]

    Trantham M R, Kuranz C C, Malamud G, et al. 2013 High Energy Density Phys. 9 303Google Scholar

    [5]

    Flaig M, Plewa T, Keiter P A, Drake R P, Grosskopf M, Kuranz C, Park H S 2014 High Energy Density Phys. 12 35Google Scholar

    [6]

    Li J W, Pei W B, He X T, Li J H, Zheng W D, Zhu S P, Kang W 2013 Phys. Plasmas 20 082707Google Scholar

    [7]

    Pak A, Divol L, Gregori G, et al. 2013 Phys. Plasmas 20 056315Google Scholar

    [8]

    Reighard A B, Drake R P, Dannenberg K K, et al. 2006 Phys. Plasmas 13 082901Google Scholar

    [9]

    Stehlé C, González M, Kozlva M, et al. 2010 Laser Part. Beams 28 253Google Scholar

    [10]

    Kuranz C C, Drake R P, Huntington C M, et al. 2013 High Energy Density Phys. 9 315Google Scholar

    [11]

    Michaut C, Vinci T, Boireau L, et al. 2007 Astrophys. Space Sci. 307 159Google Scholar

    [12]

    Chaulagain U, Stehlé C, Larour J, et al. 2015 High Energy Density Phys. 17 106Google Scholar

    [13]

    Cotelo M, Velarde P, Varga A G, Portillo D, Stehlé C, Chaulagain U, Kozlova M, Larour J, Suzuki-Vidal F 2015 High Energy Density Phys. 17 68Google Scholar

    [14]

    Vinci T, Koenig M, Benuzzi-Mounaix A, Michaut C, Boireau L, Leygnac S, Bouquet S, Peyrusse O, Batani D 2006 Phys. Plasmas 13 010702Google Scholar

    [15]

    Michel T, Albertazzi B, Mabey P, Rigon G, Lefevre F, Som L, Barroso P, Egashira S, Kumar R, Michaut C, Ota M, Ozaki N, Sakawa Y, Sano T, Falize E, Koenig M 2020 Astrophys. J. 25 888

    [16]

    Keiter P A, Drake R P, Perry T S, Robey H F, Remington B A, Iglesias C A, Wallace R J 2002 Phys. Rev. Lett. 89 165003Google Scholar

    [17]

    Nilsen J, Kritcher A L, Martin M E, Tipton R E, Whitley H D, Swift D C, Döppner T, Bachmann B L, Lazicki A E, Kostinski N B, Maddox B R, Collins G W, Glenzer S H, Falcone R W 2020 Matter Radiat. Extremes 5 018401Google Scholar

    [18]

    Huntington C M, Shimony A, Trantham M, et al. 2018 Phys. Plasmas 25 052118Google Scholar

    [19]

    Kuranz C C, Park H S, Huntington C M, et al. 2018 Nat. Commun. 9 1564Google Scholar

    [20]

    庄礼贤, 尹协远, 马晖扬 2009 流体力学(合肥: 中国科学技术大学出版社) 第268页

    Zhuang L X, Yin X Y, Ma H Y 2009 Fluid Mechanics (Hefei: University of Science and Technology of China Press) p268 (in Chinese)

    [21]

    Motl B J 2008 Ph. D. Dissertation (Wisconsin: University of Wisconsin- Madison)

    [22]

    Dimonte G, Frerking C E, Schneider M, Remington B 1995 Phys. Plasmas 3 614

    [23]

    张璐, 杨家敏 2012 物理学报 61 045203Google Scholar

    Zhang L, Yang J M 2012 Acta Phys. Sin. 61 045203Google Scholar

    [24]

    Martinez D A, Smalyuk V A, MacPhee A G, et al. 2017 Phys. Plasmas 24 102707Google Scholar

    [25]

    肖德龙, 孙顺凯, 薛创, 张扬, 丁宁 2015 物理学报 64 235203Google Scholar

    Xiao D L, Sun S K, Xue C, Zhang Y, Ding L 2015 Acta Phys. Sin. 64 235203Google Scholar

    [26]

    蒙世坚, 黄展常, 甯家敏, 胡青元, 叶繁, 秦义, 许泽平, 徐荣昆 2016 物理学报 65 075201Google Scholar

    Meng S J, Huang Z C, Ning J M, Hu Q Y, Ye F, Qin Y, Xu Z P, Xu R K 2016 Acta Phys. Sin. 65 075201Google Scholar

  • [1] 张升博, 张焕好, 张军, 毛勇建, 陈志华, 石启陈, 郑纯. 激波与轻质气柱作用过程的磁场抑制特性. 物理学报, 2024, 73(8): 084701. doi: 10.7498/aps.73.20231916
    [2] 孙贝贝, 叶文华, 张维岩. 密度扰动的类Richtmyer-Meshkov不稳定性增长及其与无扰动界面耦合的数值模拟. 物理学报, 2023, 72(19): 194701. doi: 10.7498/aps.72.20230928
    [3] 张升博, 张焕好, 陈志华, 郑纯. 不同界面组分分布对Richtmyer-Meshkov不稳定性的影响. 物理学报, 2023, 72(10): 105202. doi: 10.7498/aps.72.20222090
    [4] 党子涵, 郑纯, 张焕好, 陈志华. 汇聚激波诱导具有正弦扰动双层重气柱界面的演化机理. 物理学报, 2022, 71(21): 214703. doi: 10.7498/aps.71.20221012
    [5] 沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈. 纵向磁场抑制Richtmyer-Meshkov不稳定性机理. 物理学报, 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [6] 董国丹, 郭则庆, 秦建华, 张焕好, 姜孝海, 陈志华, 沙莎. 不同磁场构型下Richtmyer-Meshkov不稳定性的数值研究及动态模态分解. 物理学报, 2019, 68(16): 165201. doi: 10.7498/aps.68.20190410
    [7] 李冬冬, 王革, 张斌. 激波作用不同椭圆氦气柱过程中流动混合研究. 物理学报, 2018, 67(18): 184702. doi: 10.7498/aps.67.20180879
    [8] 董国丹, 张焕好, 林震亚, 秦建华, 陈志华, 郭则庆, 沙莎. 磁控条件下激波冲击三角形气柱过程的数值研究. 物理学报, 2018, 67(20): 204701. doi: 10.7498/aps.67.20181127
    [9] 赵凯歌, 薛创, 王立锋, 叶文华, 吴俊峰, 丁永坤, 张维岩, 贺贤土. 经典瑞利-泰勒不稳定性界面变形演化的改进型薄层模型. 物理学报, 2018, 67(9): 094701. doi: 10.7498/aps.67.20172613
    [10] 李俊涛, 孙宇涛, 胡晓棉, 任玉新. 激波冲击V形界面重气体导致的壁面与旋涡作用及其对湍流混合的影响. 物理学报, 2017, 66(23): 235201. doi: 10.7498/aps.66.235201
    [11] 李俊涛, 孙宇涛, 潘建华, 任玉新. 冲击加载下V形界面的失稳与湍流混合. 物理学报, 2016, 65(24): 245202. doi: 10.7498/aps.65.245202
    [12] 沙莎, 陈志华, 张庆兵. 激波与SF6球形气泡相互作用的数值研究. 物理学报, 2015, 64(1): 015201. doi: 10.7498/aps.64.015201
    [13] 肖德龙, 孙顺凯, 薛创, 张扬, 丁宁. Z箍缩动态黑腔形成过程和关键影响因素数值模拟研究. 物理学报, 2015, 64(23): 235203. doi: 10.7498/aps.64.235203
    [14] 沙莎, 陈志华, 薛大文, 张辉. 激波与SF6梯形气柱相互作用的数值模拟. 物理学报, 2014, 63(8): 085205. doi: 10.7498/aps.63.085205
    [15] 沙莎, 陈志华, 薛大文. 激波冲击R22重气柱所导致的射流与混合研究. 物理学报, 2013, 62(14): 144701. doi: 10.7498/aps.62.144701
    [16] 霍新贺, 王立锋, 陶烨晟, 李英骏. 非理想流体中Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究. 物理学报, 2013, 62(14): 144705. doi: 10.7498/aps.62.144705
    [17] 曹柱荣, 缪文勇, 董建军, 袁永腾, 杨正华, 袁铮, 张海鹰, 刘慎业, 江少恩, 丁永坤. 烧蚀RT不稳定性X射线分幅诊断研究进展. 物理学报, 2012, 61(7): 075213. doi: 10.7498/aps.61.075213
    [18] 陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏. 任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究. 物理学报, 2012, 61(7): 075207. doi: 10.7498/aps.61.075207
    [19] 方智恒, 王伟, 贾果, 董佳钦, 熊俊, 郑无敌, 李永升, 罗平庆, 傅思祖, 顾援, 王世绩. 高温烧蚀初始印记及其瑞利-泰勒不稳定性发展的研究. 物理学报, 2009, 58(10): 7057-7061. doi: 10.7498/aps.58.7057
    [20] 王立锋, 滕爱萍, 叶文华, 范征锋, 陶烨晟, 林传栋, 李英骏. 超声速流体Kelvin-Helmholtz不稳定性速度梯度效应研究. 物理学报, 2009, 58(12): 8426-8431. doi: 10.7498/aps.58.8426
计量
  • 文章访问数:  4182
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 修回日期:  2021-05-20
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-10-20

/

返回文章
返回