搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间约束结合梯度下降法提高铝合金中Fe成分激光诱导击穿光谱技术检测精度

戴宇佳 李明亮 宋超 高勋 郝作强 林景全

引用本文:
Citation:

空间约束结合梯度下降法提高铝合金中Fe成分激光诱导击穿光谱技术检测精度

戴宇佳, 李明亮, 宋超, 高勋, 郝作强, 林景全

Accuracy improvement of Fe element in aluminum alloy by laser induced breakdown spectroscopy under spatial confinement combined with gradient descent

Dai Yu-Jia, Li Ming-Liang, Song Chao, Gao Xun, Hao Zuo-Qiang, Lin Jing-Quan
PDF
HTML
导出引用
  • 铝合金中Fe元素的含量直接影响合金的塑性、耐热性、强度及抗应力腐蚀性能, 其成分的定量分析是合金成分在线检测的重要环节. 为了提高铝合金中Fe元素定量分析精度, 把空间约束纳秒激光诱导击穿光谱技术与梯度下降法相结合. 通过采集激光诱导铝合金等离子体发射光谱, 发现在平板空间约束下的等离子体辐射强度有明显增强, 在间距为10 mm时的等离子体发射光谱增强约2.3倍. 分别利用内标法和梯度下降法建立定标模型, 对比两种模型的拟合系数、均方根误差和平均相对误差. 在平板约束条件下, 相比于内标法, 梯度下降法得到的Fe元素定量分析参数R2从95.22%提升到了99.22%, 训练集均方根误差从质量分数0.1409%下降到了0.0731%, 测试集均方根误差从质量分数0.1401%下降到了0.0756%, 平均相对误差从6.8893%下降到3.5521%. 与内标定标模型相比, 梯度下降定标模型的精确度和稳定性都有所提高, 空间约束LIBS结合梯度下降法可以有效地降低合金基体效应和自吸收效应对定量分析的影响.
    The concentration of Fe in aluminum alloy can affect the plasticity, heat resistance, strength and stress corrosion resistance of the alloy. The quantitative analysis of aluminum alloy composition is an important part of the online detection of alloy composition. To improve the quantitative analysis accuracy of Fe in aluminum alloy, the spatial confinement nanosecond laser-induced breakdown spectroscopy is combined with the gradient-descent method. By collecting laser-induced aluminum alloy plasma emission spectra, it is found that the plasma radiation intensity under the confinement of the plate space is significantly enhanced. The enhancement factor of the plasma emission spectrum with a plate spacing of 10 mm is 2.3. The internal standard method and the gradient descent method are used to establish the calibration models respectively, and the values of fitting coefficient (R2), root mean square error (RMSE) and average relative error (ARE) of the two models are compared. Without plate spatial confinement, the R2, RMSEC, RMSEP and ARE of the Fe element calculated by the internal standard method are 90.66%, 0.1903%, 0.1910% and 9.2220%, respectively. The R2, RMSEC, RMSEP and ARE of Fe element obtained by the gradient descent method are 97.12%, 0.1467% (weight concentration), 0.1124% (weight concentration) and 7.1373%, respectively. With the plate spatial confinement, the R2, RMSEC, RMSEP and ARE of Fe element calculated by the internal standard method are 95.22%, 0.1409% (weight concentration), 0.1401% (weight concentration), and 6.8893%, respectively. The R2, RMSEC, RMSEP and ARE of Fe element obtained by the gradient descent method are 99.22%, 0.0731% (weight concentration), 0.0756% (weight concentration) and 3.5521%, respectively. Comparing with the internal calibration model, the accuracy and stability of the gradient descent calibration model are improved. The spatial confinement LIBS combined with the gradient descent method can effectively reduce the influence of the alloy matrix effect and the self-absorption effect on the quantitative analysis.
      通信作者: 宋超, songchaocc@cust.edu.cn ; 高勋, gaoxun@cust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61575030)和吉林省自然科学基金(批准号: 20180101283JC, 20200301042RQ)资助的课题
      Corresponding author: Song Chao, songchaocc@cust.edu.cn ; Gao Xun, gaoxun@cust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575030) and the Natural Science Foundation of Jilin Province, China (Grant Nos. 20180101283JC, 20200301042RQ)
    [1]

    张新明, 邓运来, 张勇 2015 金属学报 51 257271Google Scholar

    Zhang M X, Deng Y L, Zhang Y 2015 Acta Metall. Sin. 51 257271Google Scholar

    [2]

    Su R M, Xiao J, Jia Y X, Wang K N, Qu Y D 2019 Mater. Res. Express 6 126561Google Scholar

    [3]

    Ye M Z 2015 Metall. Anal. 1924

    [4]

    Cheng A Y, Yu J, Gao C L, Zhang L S 2020 IOP Conf. Ser. : Mater. Sci. Eng. 780 062059

    [5]

    Lahmar L, Benamar M E A, Melzi M A, Melkaou C H, Mabdoua Y 2020 X‐Ray Spectrom. 49 313Google Scholar

    [6]

    Zhao S Y, Gao X, Chen A M, Lin J Q 2020 Appl. Phys. B 126 7Google Scholar

    [7]

    Feng J, Wang Z, West L, Li Z, Lu J 2011 Anal. Bioanal. Chem. 400 3261Google Scholar

    [8]

    Cai L, Wang Z, Li C, Huang X, Zhao D, Ding H 2019 Rev. Sci. Instrum. 90 053503Google Scholar

    [9]

    Lin X M, Sun H R, Gao X, Xu Y T, Wang Z X, Wang Y 2021 Spectrochim. Acta, Part B 180 106200Google Scholar

    [10]

    Zeng Q, Pan C, Li C, Fei T, Ding X, Du X, Wang Q 2018 Spectrochim. Acta, Part B 142 68Google Scholar

    [11]

    Guo L B, Zhang D, Sun L X, Yao S C, Zhang L, Wang Z Z, Wang Q Q, Ding H B, Lu Y, Hou Z Y, Wang Z 2021 Front. Phys. 16 22500Google Scholar

    [12]

    Fu Y T, Gu W L, Hou Z Y, Muhammed S A, Li T Q, Wang Y, Wang Z 2021 Front. Phys. 16 22502Google Scholar

    [13]

    Guo L B, Hao Z Q, Shen M, Xiong W, He X N, Xie Z Q, Gao M, Li X Y, Zeng X Y, Lu Y F 2013 Opt. Express 21 1818818195Google Scholar

    [14]

    Li X W, Yin H L, Wang Z, Fu Y T, Li Z, Ni W D 2015 Spectrochim. Acta, Part B 111 102107Google Scholar

    [15]

    Ren L, Hao X J, Tang H J, Sun Y K 2019 Results Phys. 15 102798Google Scholar

    [16]

    Tian Y, Chen Q, Lin Y Q, Lu Y 2021 Spectrochim. Acta, Part B 175 106027Google Scholar

    [17]

    Hao Z Q, Li C M, Shen M, Yang X Y 2015 Opt. Express 23 77957801Google Scholar

    [18]

    Rao A, Jenkins P R, Auxier J, Shattan M B 2021 J. Anal. At. Spectrom. 36 399406Google Scholar

    [19]

    Ni B Z, Chen X L, Fu H B, Wang J G 2014 Front. Phys. 9 439445Google Scholar

    [20]

    Zhang Y Q, Sun C, Yue Z Q, Shabbir S, Xu W J, Wu M T, Zou L, Tan Y Q, Chen F Y, Yu J 2020 Opt. Express 28 32019Google Scholar

    [21]

    Li T Q, Hou Z Y, Fu Y T, Yu J L, Gu W L, Wang Z 2019 Anal. Chim. Acta. 1058 3947Google Scholar

    [22]

    Hinton G E 1989 Artif. Intell. 40 185234

    [23]

    Zhao J K, Zhang R F, Zhou Z, Chen S 2021 Neurocomputing 438 184194

    [24]

    Hao W 2021 Appl. Math. Lett. 112 106739Google Scholar

    [25]

    Gao X, Liu L, Song C, Lin J Q 2015 J. Phys. D: Appl. Phys. 48 175205Google Scholar

    [26]

    Zhang D, Chen A M, Wang X W, Wang Y, Sui L Z, Ke D, Li S Y, Jiang Y F, Jin M X 2018 Spectrochim. Acta, Part B 143 7177Google Scholar

    [27]

    Guo L B, Li C M, Hu W, Zhou Y S, Zhang B Y, Cai Z X, Zeng X Y, Lu Y F 2011 Appl. Phys. Lett. 98 131501Google Scholar

    [28]

    Yao S C, Lu J D, Li J Y, Chen K, Li J, Dong M R 2010 J. Anal. At. Spectrom. 25 1733Google Scholar

  • 图 1  空间约束ns-LIBS实验装置图

    Fig. 1.  Experimental setup diagram of spatial confinement nanosecond laser-induced breakdown plasma.

    图 2  梯度下降算法流程图

    Fig. 2.  Flowchart of gradient descent algorithm.

    图 3  空间约束纳秒激光诱导击穿光谱

    Fig. 3.  Nanosecond laser-induced breakdown spectroscopy with and without parallel plates confinement.

    图 4  Fe元素的LIBS内标法定标曲线, 图中的含量均为质量分数

    Fig. 4.  Calibration curve of internal standard method, concentrations in the figure are all the weight concentration.

    图 5  代价函数随迭代次数的变化图 (a) 无约束; (b) 约束

    Fig. 5.  Graph of the change of the cost function with the number of iterations: (a) Without spatial confinement; (b) with spatial confinement.

    图 6  Fe元素梯度下降法LIBS定标曲线, 图中的含量为质量分数

    Fig. 6.  Calibration curve of gradient descent, concentrations in the figure are all the weight concentration.

    表 1  铝合金标样元素成分表(质量分数百分比)

    Table 1.  Element composition of standard aluminum alloy sample (weight percent)

    样品E311E312aE313E314E315E316
    Cu4.512.451.523.330.9275.55
    Mg0.4281.3700.8971.8002.2600.074
    Fe0.4541.2300.9081.6101.8700.115
    Ni1.5501.0902.0200.6240.1532.250
    Mn0.0950.1190.2390.1840.2870.054
    Si0.0940.7241.2200.3711.5300.090
    Zn0.1400.2200.3340.1660.3670.084
    Ti0.021000.078000.120000.055000.161000.00095
    下载: 导出CSV

    表 2  定量分析参数对比, 含量为质量分数

    Table 2.  Comparison of the quantitive analysis parameters, the concentrations are the weight concentration.

    内标法梯度下降
    无约束约束无约束约束
    R20.90660.95220.97120.9922
    RMSEC/%0.19030.14090.14670.0731
    RMSEP/%0.19100.14010.11240.0756
    ARE/%9.22206.88937.13733.5521
    下载: 导出CSV
  • [1]

    张新明, 邓运来, 张勇 2015 金属学报 51 257271Google Scholar

    Zhang M X, Deng Y L, Zhang Y 2015 Acta Metall. Sin. 51 257271Google Scholar

    [2]

    Su R M, Xiao J, Jia Y X, Wang K N, Qu Y D 2019 Mater. Res. Express 6 126561Google Scholar

    [3]

    Ye M Z 2015 Metall. Anal. 1924

    [4]

    Cheng A Y, Yu J, Gao C L, Zhang L S 2020 IOP Conf. Ser. : Mater. Sci. Eng. 780 062059

    [5]

    Lahmar L, Benamar M E A, Melzi M A, Melkaou C H, Mabdoua Y 2020 X‐Ray Spectrom. 49 313Google Scholar

    [6]

    Zhao S Y, Gao X, Chen A M, Lin J Q 2020 Appl. Phys. B 126 7Google Scholar

    [7]

    Feng J, Wang Z, West L, Li Z, Lu J 2011 Anal. Bioanal. Chem. 400 3261Google Scholar

    [8]

    Cai L, Wang Z, Li C, Huang X, Zhao D, Ding H 2019 Rev. Sci. Instrum. 90 053503Google Scholar

    [9]

    Lin X M, Sun H R, Gao X, Xu Y T, Wang Z X, Wang Y 2021 Spectrochim. Acta, Part B 180 106200Google Scholar

    [10]

    Zeng Q, Pan C, Li C, Fei T, Ding X, Du X, Wang Q 2018 Spectrochim. Acta, Part B 142 68Google Scholar

    [11]

    Guo L B, Zhang D, Sun L X, Yao S C, Zhang L, Wang Z Z, Wang Q Q, Ding H B, Lu Y, Hou Z Y, Wang Z 2021 Front. Phys. 16 22500Google Scholar

    [12]

    Fu Y T, Gu W L, Hou Z Y, Muhammed S A, Li T Q, Wang Y, Wang Z 2021 Front. Phys. 16 22502Google Scholar

    [13]

    Guo L B, Hao Z Q, Shen M, Xiong W, He X N, Xie Z Q, Gao M, Li X Y, Zeng X Y, Lu Y F 2013 Opt. Express 21 1818818195Google Scholar

    [14]

    Li X W, Yin H L, Wang Z, Fu Y T, Li Z, Ni W D 2015 Spectrochim. Acta, Part B 111 102107Google Scholar

    [15]

    Ren L, Hao X J, Tang H J, Sun Y K 2019 Results Phys. 15 102798Google Scholar

    [16]

    Tian Y, Chen Q, Lin Y Q, Lu Y 2021 Spectrochim. Acta, Part B 175 106027Google Scholar

    [17]

    Hao Z Q, Li C M, Shen M, Yang X Y 2015 Opt. Express 23 77957801Google Scholar

    [18]

    Rao A, Jenkins P R, Auxier J, Shattan M B 2021 J. Anal. At. Spectrom. 36 399406Google Scholar

    [19]

    Ni B Z, Chen X L, Fu H B, Wang J G 2014 Front. Phys. 9 439445Google Scholar

    [20]

    Zhang Y Q, Sun C, Yue Z Q, Shabbir S, Xu W J, Wu M T, Zou L, Tan Y Q, Chen F Y, Yu J 2020 Opt. Express 28 32019Google Scholar

    [21]

    Li T Q, Hou Z Y, Fu Y T, Yu J L, Gu W L, Wang Z 2019 Anal. Chim. Acta. 1058 3947Google Scholar

    [22]

    Hinton G E 1989 Artif. Intell. 40 185234

    [23]

    Zhao J K, Zhang R F, Zhou Z, Chen S 2021 Neurocomputing 438 184194

    [24]

    Hao W 2021 Appl. Math. Lett. 112 106739Google Scholar

    [25]

    Gao X, Liu L, Song C, Lin J Q 2015 J. Phys. D: Appl. Phys. 48 175205Google Scholar

    [26]

    Zhang D, Chen A M, Wang X W, Wang Y, Sui L Z, Ke D, Li S Y, Jiang Y F, Jin M X 2018 Spectrochim. Acta, Part B 143 7177Google Scholar

    [27]

    Guo L B, Li C M, Hu W, Zhou Y S, Zhang B Y, Cai Z X, Zeng X Y, Lu Y F 2011 Appl. Phys. Lett. 98 131501Google Scholar

    [28]

    Yao S C, Lu J D, Li J Y, Chen K, Li J, Dong M R 2010 J. Anal. At. Spectrom. 25 1733Google Scholar

  • [1] 侯佳佳, 张大成, 冯中琦, 朱江峰. 基于温度迭代校正自吸收效应的激光诱导击穿光谱定量分析方法. 物理学报, 2024, 73(5): 054205. doi: 10.7498/aps.73.20231541
    [2] 董鹏凯, 赵上勇, 郑柯鑫, 王蓟, 高勋, 郝作强, 林景全. 激光诱导击穿光谱技术结合神经网络和支持向量机算法的人参产地快速识别研究. 物理学报, 2021, 70(4): 040201. doi: 10.7498/aps.70.20201520
    [3] 杨雪, 李苏宇, 姜远飞, 陈安民, 金明星. 不同样品温度下聚焦透镜到样品表面距离对激光诱导铜击穿光谱的影响. 物理学报, 2019, 68(6): 065201. doi: 10.7498/aps.68.20182198
    [4] 杨文斌, 周江宁, 李斌成, 邢廷文. 激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量. 物理学报, 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [5] 刘玉峰, 张连水, 和万霖, 黄宇, 杜艳君, 蓝丽娟, 丁艳军, 彭志敏. 激光诱导击穿火焰等离子体光谱研究. 物理学报, 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [6] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [7] 张颖, 张大成, 马新文, 潘冬, 赵冬梅. 基于激光诱导击穿光谱技术定量分析食用明胶中的铬元素. 物理学报, 2014, 63(14): 145202. doi: 10.7498/aps.63.145202
    [8] 陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂. 基于多元定标法的脐橙Pb元素激光诱导击穿光谱定量分析. 物理学报, 2014, 63(10): 104213. doi: 10.7498/aps.63.104213
    [9] 于洋, 郝中骐, 李常茂, 郭连波, 李阔湖, 曾庆栋, 李祥友, 任昭, 曾晓雁. 支持向量机算法在激光诱导击穿光谱技术塑料识别中的应用研究. 物理学报, 2013, 62(21): 215201. doi: 10.7498/aps.62.215201
    [10] 张旭, 姚明印, 刘木华. 激光诱导击穿光谱结合偏最小二乘法定量分析脐橙中Cd含量. 物理学报, 2013, 62(4): 044211. doi: 10.7498/aps.62.044211
    [11] 王春龙, 刘建国, 赵南京, 马明俊, 王寅, 胡丽, 张大海, 余洋, 孟德硕, 章炜, 刘晶, 张玉钧, 刘文清. 水体重金属激光诱导击穿光谱定量分析方法对比研究. 物理学报, 2013, 62(12): 125201. doi: 10.7498/aps.62.125201
    [12] 宋长新, 马克, 秦川, 肖鹏. 结合稀疏编码和空间约束的红外图像聚类分割研究. 物理学报, 2013, 62(4): 040702. doi: 10.7498/aps.62.040702
    [13] 鲁翠萍, 刘文清, 赵南京, 刘立拓, 陈东, 张玉钧, 刘建国. 土壤重金属铬元素的激光诱导击穿光谱定量分析研究. 物理学报, 2011, 60(4): 045206. doi: 10.7498/aps.60.045206
    [14] 孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文. 基于激光诱导击穿光谱技术的铝合金成分定量分析. 物理学报, 2010, 59(7): 4571-4576. doi: 10.7498/aps.59.4571
    [15] 王娜, 唐壁玉. L12型铝合金的结构、弹性和电子性质的第一性原理研究. 物理学报, 2009, 58(13): 230-S234. doi: 10.7498/aps.58.230
    [16] 樊飞, 班春燕, 王洋, 巴启先, 崔建忠. 普通铸造和低频电磁铸造7050铝合金电阻率-温度特性的研究. 物理学报, 2009, 58(1): 638-643. doi: 10.7498/aps.58.638
    [17] 张大成, 马新文, 朱小龙, 李 斌, 祖凯玲. 激光诱导击穿光谱应用于三种水果样品微量元素的分析. 物理学报, 2008, 57(10): 6348-6353. doi: 10.7498/aps.57.6348
    [18] 庞雪君, 王 强, 王春江, 王亚勤, 李亚彬, 赫冀成. 强磁场对铝合金中溶质组元分布状态的影响效果. 物理学报, 2006, 55(10): 5129-5134. doi: 10.7498/aps.55.5129
    [19] 彭开萍, 陈文哲, 钱匡武. 3004铝合金“反常”锯齿屈服现象的研究. 物理学报, 2006, 55(7): 3569-3575. doi: 10.7498/aps.55.3569
    [20] 吴汉华, 龙北红, 吕宪义, 汪剑波, 金曾孙. 铝合金微弧氧化过程中电学参量的特性研究. 物理学报, 2005, 54(4): 1697-1701. doi: 10.7498/aps.54.1697
计量
  • 文章访问数:  4896
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 修回日期:  2021-06-18
  • 上网日期:  2021-10-05
  • 刊出日期:  2021-10-20

/

返回文章
返回