-
激光诱导击穿光谱(laser-induced breakdown spectroscopy, LIBS)是一种理想的实时在线检测合金中微量元素的方法. 然而在激光诱导击穿产生的高密度等离子体中, 自吸收通常是一种不期望出现的效应, 它降低了谱线的真实强度, 使谱线强度随目标物质含量增长呈非线性, 从而严重影响对目标中元素含量测量的准确性. 本文提出了一种基于温度迭代校正自吸收效应的方法, 借助等离子体热平衡辐射模型, 对等离子体电子温度(T )和辐射粒子数密度乘以吸收路径长度(Nl )这两个参数进行迭代计算和校正, 消除自吸收对谱线强度的影响, 最终提高定量分析的准确性. 对合金钢样品中Mn元素的实验测量结果表明, 该方法有效地提高了Boltzmann平面图的线性度及元素含量的测量精度. 该方法模型简单, 计算效率高, 且与Stark展宽系数的可用性和准确性无关, 可以直接获得辐射粒子数密度和吸收路径长度参数, 因此在提高LIBS定量分析能力的同时, 还可以实现对等离子体状态的诊断.Laser-induced breakdown spectroscopy (LIBS) is an ideal real-time on-line method of detecting minor elements in alloys. However, in the case of laser-produced high-density plasma, the self-absorption is usually an undesired effect because it not only reduces the true line intensity, leading the line intensity to become nonlinear with the increase of emitting species content, but also affects the characterization parameters of the plasma, and finally affects the accuracy of quantitative analysis. Since the plasma electron temperature
$(T)$ , radiation particle number density and absorption path length (Nl ) determine the degree of self-absorption and affect the corrected spectral line intensity, a new self-absorption correction method is proposed based on temperature iteration. The initial T is obtained by using this method through spectral line intensity, and the self-absorption coefficient SA is calculated based on the initial Nl parameter to correct the spectral line intensity. Then a new T is obtained from the new spectral line intensity and the new SA is calculated to further correct the spectral line intensity. Through continuous calculation and correction of these two parameters, self-absorption correction is finally achieved. The experimental results of alloy steel samples show that the linearity of Boltzmann plot is increased from 0.867 without self-absorption correction to 0.974 with self-absorption correction, and the linear correlation coefficient R2 of the single variable calibration curve for Mn element increases from 0.971 to 0.997. The relative error of elemental content measurement is improved from 4.32% without self-absorption correction to 1.23% with self-absorption correction. Compared with the commonly applied self-absorption correction methods, this method has obvious advantages of simpler programming, higher computation efficiency, and its independence of the availability or accuracy of Stark broadening coefficients. Moreover, this method can directly obtain the radiation particle number density and absorption path length, which is beneficial to the diagnosis and quantitative analysis of plasma.-
Keywords:
- laser-induced breakdown spectroscopy (LIBS) /
- self-absorption /
- temperature iterative correction /
- quantitative analysis
[1] Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2002 Spectrochim. Acta, Part B 57 339Google Scholar
[2] 孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文 2010 物理学报 59 4571Google Scholar
Sun D X, Su M G, Dong C Z, Wang X L, Zhang D C, Ma X W 2010 Acta Phys. Sin. 59 4571Google Scholar
[3] Yao S C, Lu J D, Chen K, Pan S H, Li J Y, Dong M 2011 Appl. Surf. Sci. 257 3103Google Scholar
[4] Hai R, Farid N, Zhao D Y, Zhang L, Liu J H, Ding H B, Wu J, Luo G 2013 Spectrochim. Acta, Part B 87 147Google Scholar
[5] Wang Z, Yuan T B, Hou Z Y, Zhou W D, Lu J D, Ding H B, Zeng X Y 2014 Front. Phys. 9 419Google Scholar
[6] 杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201Google Scholar
Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201Google Scholar
[7] Rong K, Wang Z Z, Hu R M, Liu R W, Deguchi Y, Yan J J, Liu J P 2020 Plasma Sci. Technol. 22 074010Google Scholar
[8] Bredice F, Borges F O, Sobral H, et al. 2006 Spectrochim. Acta, Part B 61 1294Google Scholar
[9] 赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 物理学报 67 165201Google Scholar
Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201Google Scholar
[10] Aguilera J A, Bengoechea J, Aragón C 2003 Spectrochim. Acta, Part B 58 221Google Scholar
[11] Mansour S A M 2015 Opt. Photonics J. 5 79Google Scholar
[12] Gornushkin I B, Stevenson C L, Smith B W, Omenetto N, Winefordner J D 2001 Spectrochim. Acta, Part B 56 1769Google Scholar
[13] Sun L, Yu H 2009 Talanta 79 388Google Scholar
[14] Li J M, Guo L B, Li C M, Zhao N, Yang X Y, Hao Z Q, Li X Y, Zeng X Y, Lu Y F 2015 Opt. Lett. 40 5224Google Scholar
[15] Tang Y, Li J M, Hao Z Q, Tang S S, Zhu Z H, Guo L B, Li X Y, Zeng X Y, Duan J, Lu Y F 2018 Opt. Express 26 12121Google Scholar
[16] Li T Q, Hou Z Y, Fu Y T, Yu J L, Gu W L, Wang Z 2019 Anal. Chim. Acta 1058 39Google Scholar
[17] Zhang Y Q, Lu Y, Tian Y, Li Y, Ye W Q, Guo J J, Zheng R E 2022 Anal. Chim. Acta 1195 339423Google Scholar
[18] 王海燕, 胡前库, 杨文朋, 李旭升 2016 物理学报 65 077101Google Scholar
Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101Google Scholar
[19] Ahmed N, Ahmed R, Rafiqe M, Baig M A 2017 Laser Part. Beams 35 1Google Scholar
[20] Miskovicova J, Angus M, Van d M H, Veis P 2020 Fusion Eng. Des. 153 111488Google Scholar
[21] Zhang D C, Ding J, Feng Z Q, et al. 2021 Spectrochim. Acta, Part B 180 106192Google Scholar
[22] Sherbini A M E, Sherbini T M E, Hegazy H, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E 2005 Spectrochim. Acta, Part B 60 1573Google Scholar
[23] 侯佳佳, 张大成, 张雷, 朱江峰, 冯中琦 中国专利 ZL 2021 1 0620946.8
Hou J J, Zhang D C, Zhang L, Zhu J F, Feng Z Q CN Patent ZL 2021 1 0620946.8 [2023-02-03
[24] Kepple P, Griem H R 1968 Phys. Rev. 173 317Google Scholar
[25] Bredice F, Borges F O, Sobral H, Villagran-Muniz M, Di Rocco H O, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2007 Spectrochim. Acta, Part B 62 1237Google Scholar
[26] Grifoni E, Legnaioli S, Lezzerini M, Lorenzetti G, Pagnotta S, Palleschi V 2014 J. Spectro. 2014 1Google Scholar
-
表 1 中低合金钢标准样品中微量元素Mn的质量含量及不确定度
Table 1. Certified weight contents and uncertainty of minor element Mn in the middle-low alloy steels.
No. 1 2 3 4 5 6 Mn weight content/% 2.07 1.62 1.26 0.85 0.43 0.14 Uncertainty/% 0.03 0.03 0.02 0.004 0.004 0.003 表 2 Mn I谱线的光谱参数
Table 2. Spectroscopic parameters of the selected lines of Mn I.
Element Wavelength /nm Transition probability/(107 s–1) Statistical weight Upper level energy/eV Lower level energy/eV Mn I 383.44 4.29 8 5.40 2.16 403.31 1.65 6 3.07 0.00 404.14 7.87 10 5.18 2.11 475.40 3.03 8 4.89 2.28 476.23 7.83 10 5.49 2.89 478.34 4.01 8 4.89 2.30 482.35 4.99 8 4.89 2.32 Fe I 400.52 2.04 5 4.65 1.56 489.15 3.08 7 5.39 2.85 Hα 656.27 5.39 4 12.09 10.20 表 3 中低合金钢标准样品中微量元素Mn质量含量的测量相对误差
Table 3. Measurement relative error of minor element Mn in the middle-low alloy steels.
样品Mn元素
质量含量/%2.07 1.62 1.26 0.85 0.43 0.14 平均 校正前测量
相对误差/%5.80 4.32 1.58 7.06 18.60 28.57 10.99 校正后测量
相对误差/%1.45 1.23 0.79 2.35 2.32 21.43 4.93 -
[1] Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2002 Spectrochim. Acta, Part B 57 339Google Scholar
[2] 孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文 2010 物理学报 59 4571Google Scholar
Sun D X, Su M G, Dong C Z, Wang X L, Zhang D C, Ma X W 2010 Acta Phys. Sin. 59 4571Google Scholar
[3] Yao S C, Lu J D, Chen K, Pan S H, Li J Y, Dong M 2011 Appl. Surf. Sci. 257 3103Google Scholar
[4] Hai R, Farid N, Zhao D Y, Zhang L, Liu J H, Ding H B, Wu J, Luo G 2013 Spectrochim. Acta, Part B 87 147Google Scholar
[5] Wang Z, Yuan T B, Hou Z Y, Zhou W D, Lu J D, Ding H B, Zeng X Y 2014 Front. Phys. 9 419Google Scholar
[6] 杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201Google Scholar
Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201Google Scholar
[7] Rong K, Wang Z Z, Hu R M, Liu R W, Deguchi Y, Yan J J, Liu J P 2020 Plasma Sci. Technol. 22 074010Google Scholar
[8] Bredice F, Borges F O, Sobral H, et al. 2006 Spectrochim. Acta, Part B 61 1294Google Scholar
[9] 赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 物理学报 67 165201Google Scholar
Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201Google Scholar
[10] Aguilera J A, Bengoechea J, Aragón C 2003 Spectrochim. Acta, Part B 58 221Google Scholar
[11] Mansour S A M 2015 Opt. Photonics J. 5 79Google Scholar
[12] Gornushkin I B, Stevenson C L, Smith B W, Omenetto N, Winefordner J D 2001 Spectrochim. Acta, Part B 56 1769Google Scholar
[13] Sun L, Yu H 2009 Talanta 79 388Google Scholar
[14] Li J M, Guo L B, Li C M, Zhao N, Yang X Y, Hao Z Q, Li X Y, Zeng X Y, Lu Y F 2015 Opt. Lett. 40 5224Google Scholar
[15] Tang Y, Li J M, Hao Z Q, Tang S S, Zhu Z H, Guo L B, Li X Y, Zeng X Y, Duan J, Lu Y F 2018 Opt. Express 26 12121Google Scholar
[16] Li T Q, Hou Z Y, Fu Y T, Yu J L, Gu W L, Wang Z 2019 Anal. Chim. Acta 1058 39Google Scholar
[17] Zhang Y Q, Lu Y, Tian Y, Li Y, Ye W Q, Guo J J, Zheng R E 2022 Anal. Chim. Acta 1195 339423Google Scholar
[18] 王海燕, 胡前库, 杨文朋, 李旭升 2016 物理学报 65 077101Google Scholar
Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101Google Scholar
[19] Ahmed N, Ahmed R, Rafiqe M, Baig M A 2017 Laser Part. Beams 35 1Google Scholar
[20] Miskovicova J, Angus M, Van d M H, Veis P 2020 Fusion Eng. Des. 153 111488Google Scholar
[21] Zhang D C, Ding J, Feng Z Q, et al. 2021 Spectrochim. Acta, Part B 180 106192Google Scholar
[22] Sherbini A M E, Sherbini T M E, Hegazy H, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E 2005 Spectrochim. Acta, Part B 60 1573Google Scholar
[23] 侯佳佳, 张大成, 张雷, 朱江峰, 冯中琦 中国专利 ZL 2021 1 0620946.8
Hou J J, Zhang D C, Zhang L, Zhu J F, Feng Z Q CN Patent ZL 2021 1 0620946.8 [2023-02-03
[24] Kepple P, Griem H R 1968 Phys. Rev. 173 317Google Scholar
[25] Bredice F, Borges F O, Sobral H, Villagran-Muniz M, Di Rocco H O, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2007 Spectrochim. Acta, Part B 62 1237Google Scholar
[26] Grifoni E, Legnaioli S, Lezzerini M, Lorenzetti G, Pagnotta S, Palleschi V 2014 J. Spectro. 2014 1Google Scholar
计量
- 文章访问数: 2574
- PDF下载量: 69
- 被引次数: 0