搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工作参数对平行轨道加速器放电模式的影响

刘帅 史宇昊 林天煜 张永鹏 路志建 杨兰均

引用本文:
Citation:

工作参数对平行轨道加速器放电模式的影响

刘帅, 史宇昊, 林天煜, 张永鹏, 路志建, 杨兰均

Influence of operating parameters on discharge mode of parallel-rail accelerator

Liu Shuai, Shi Yu-Hao, Lin Tian-Yu, Zhang Yong-Peng, Lu Zhi-Jian, Yang Lan-Jun
PDF
HTML
导出引用
  • 电磁等离子体加速器可产生高密度高速度等离子体射流, 因此广泛应用于核物理与天体物理等领域. 本文建立了平行轨道加速器电磁驱动等离子体实验平台, 通过磁探头、光谱仪研究了不同放电电流和注气量条件下平行轨道加速器的放电模式. 平行轨道加速器驱动电源为正弦振荡衰减波电源, 总电容为120 μF, 回路总电感约为400 nH. 快速气阀电流波形为单脉冲双指数波形. 当放电电流为40 kA时, 平行轨道加速器的工作模式为雪犁模式. 随着放电电流的增大, 平行轨道加速器出现爆燃模式, 且电流通道后沿在电流上升阶段固定不动, 而在电流下降阶段开始向轨道末端移动. 注气量越大, 平行轨道加速器电流通道前沿速度越慢, 电流分布越集中, 放电模式越趋向于雪犁模式. 工作参数主要影响轨道两端的电压, 从而影响平行轨道加速器的放电模式.
    Electromagnetic plasma accelerators which can generate hypervelocity and high density plasma jets have been widely used in the fields of nuclear physics and astrophysics. In this paper, an experimental platform of parallel-rail accelerator electromagnetically driven plasma is established, and the discharge modes under different discharge currents and gas injection conditions are studied through using magnetic probes, a spectrometer and an ICCD. A fast gas valve is used to inject argon into the rail electrode area. The time delay between the fast valve discharge and the parallel-rail accelerator discharge is fixed to be 450 μs. The waveform of power supply of the parallel-rail accelerator is a sinusoidal wave. The total capacitance is 120 μF, the total inductance is about 400 nH, and the maximum current is 170 kA. The fast valve current waveform is a double exponential waveform with a maximum current of 2.5 kA. When the discharge current is 40 kA, a current sheet with a certain thickness is generated, and the current sheet moves through different detection positions along the rail electrode at a certain velocity. Therefore, the working mode of the parallel-rail accelerator is the snowplow mode. As the discharge current increases, the trailing edge of the current channel is fixed during the current rising phase, and starts to move to the end of the rail during the current falling phase. A diffuse distributed current channel is formed, and the parallel-rail accelerator operates in a deflagration mode. As the gas injection mass increases, the current channel front velocity decreases to form a more concentrated distributed current channel, and the discharge mode turns into the snowplow mode. The stationary current channel in the deflagration mode is maintained mainly by ablating the electrode. The operating parameters mainly affect the rail voltage, which in turn affects the discharge mode of the parallel-rail accelerator. The rail voltage increases when the discharge current or the current rate of change increases. If the rail gap behind the current channel cannot withstand the high rail voltage under large discharge current or large current rate of change, the breakdown occurs, which results in the deflagration mode discharge.
      通信作者: 杨兰均, yanglj@xjtu.edu.cn
    • 基金项目: 陕西省自然科学基础研究计划(批准号: 2021JQ-044)和国防科技重点实验室基金(批准号: 6142605200104)资助的课题
      Corresponding author: Yang Lan-Jun, yanglj@xjtu.edu.cn
    • Funds: Project supported by the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2021JQ-044) and the National Defense Science and Technology Foundation of State Key Laboratory, China (Grant No. 6142605200104).
    [1]

    Ziemer J K, Choueiri E Y 2001 Plasma Sources Sci. Technol. 10 395Google Scholar

    [2]

    Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232Google Scholar

    [3]

    Loebner K T K, Underwood T C, Wang B C, Cappelli M A 2016 IEEE Trans. Plasma Sci. 44 1534Google Scholar

    [4]

    蔡明辉, 吴逢时, 李宏伟, 韩建伟 2014 物理学报 63 019401Google Scholar

    Cai M H, Wu F S, Li H W, Han J W 2014 Acta Phys. Sin. 63 019401Google Scholar

    [5]

    Ticos C M, Scurtu A, Toader D, Banu N 2015 Rev. Sci. Instrum. 86 033509Google Scholar

    [6]

    高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 物理学报 61 145201Google Scholar

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar

    [7]

    Underwood T C, Loebner K T K, Cappelli M A 2017 High Energy Density Phys. 23 73Google Scholar

    [8]

    Zhang Y, Gilmore M, Hsu S C, Fisher D M, Lynn A G 2017 Phys. Plasmas 24 110702Google Scholar

    [9]

    Zhang Y, Fisher D M, Gilmore M, Hsu S C, Lynn A G 2018 Phys. Plasmas 25 055709Google Scholar

    [10]

    Hsu S C, Langendorf S J, Yates K C, Dunn J P, Brockington S, Case A, Cruz E, Witherspoon F D, Gilmore M A, Cassibry J T, Samulyak R, Stoltz P, Schillo K, Shih W, Beckwith K, Thio Y C F 2018 IEEE Trans. Plasma Sci. 46 1951Google Scholar

    [11]

    Thio Y C F, Hsu S C, Witherspoon F D, Cruz E, Case A, Langendorf S, Yates K, Dunn J, Cassibry J, Samulyak R, Stoltz P, Brockington S J, Williams A, Luna M, Becker R, Cook A 2019 Fusion Sci. Technol. 75 581Google Scholar

    [12]

    Yate K C, Langendorf S J, Hsu S C, Dunn J P, Brockington S, Case A, Cruz E, Witherspoon F D, Thio Y C F, Cassibry J T, Schillo K, Gilmore M 2020 Phys. Plasmas 27 062706Google Scholar

    [13]

    赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 105203Google Scholar

    Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar

    [14]

    漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 035203Google Scholar

    Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203Google Scholar

    [15]

    Markusic T E, Choueiri E Y, Berkery J W 2004 Phys. Plasmas 11 4847Google Scholar

    [16]

    Berkery J W, Choueiri E Y 2006 Plasma Sources Sci. Technol. 15 64Google Scholar

    [17]

    刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 物理学报 67 065201Google Scholar

    Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar

    [18]

    Poehlmann F R, Cappelli M A, Rieker G B 2010 Phys. Plasmas 17 123508Google Scholar

    [19]

    Cheng D Y 1970 Nucl. Fusion 10 305Google Scholar

    [20]

    Loebner K T K, Underwood T C, Cappelli M A 2015 Phys. Rev. Lett. 115 175001Google Scholar

    [21]

    Loebner K T K, Underwood T C, Mouratidis T, Cappelli M A 2016 Appl. Phys. Lett. 108 094104Google Scholar

    [22]

    Subramaniam V, Panneerchelvam P, Raja L L 2018 J. Phys. D:Appl. Phys. 51 215203Google Scholar

    [23]

    Sitaraman H, Raja L L 2014 Phys. Plasmas 21 012104Google Scholar

    [24]

    Woodall D M, Len L K 1985 J. Appl. Phys. 57 961Google Scholar

    [25]

    Subramaniam V, Underwood T C, Raja L L, Cappelli M A 2018 Plasma Sources Sci. Technol. 27 025016Google Scholar

    [26]

    Liu S, Huang Y Z, Guo H S, Lin T Y, Huang D, Yang L J 2018 Phys. Plasmas 25 053506Google Scholar

    [27]

    Liu S, Huang Y Z, Zhang Y P, Zhan W, Yu M H, Yang L J 2018 Phys. Plasmas 25 113505Google Scholar

    [28]

    Huba J D 2013 NRL Plasma Formulary (Washington: Naval Research Laboratory)

    [29]

    Xiao D M 2016 Gas Discharge and Gas Insulation (Shanghai: Shanghai Jiao Tong University Press) pp47–88

  • 图 1  实验装置图

    Fig. 1.  Experimental setup.

    图 2  快速气阀波形图 (a) 电流波形; (b) 注入气体的滞止压力波形

    Fig. 2.  Fast gas valve waveform: (a) Current waveform; (b) injected gas stagnation pressure waveform.

    图 3  磁场波形和电流波形

    Fig. 3.  Magnetic field and current waveforms.

    图 4  电流分布比例图

    Fig. 4.  Current distribution ratio waveform.

    图 5  不同电流下的磁场波形图 (a) 64 kA; (b) 100 kA; (c) 170 kA

    Fig. 5.  Magnetic field waveform under different currents: (a) 64 kA; (b) 100 kA; (c) 170 kA.

    图 6  不同电流下的电流分布比例 (a) 100 kA; (b) 170 kA

    Fig. 6.  Current distribution ratio under different currents: (a) 100 kA; (b) 170 kA.

    图 7  不同注气条件下磁场波形图 (a) 400 kPa/2.18 kA; (b) 800 kPa/2.50 kA

    Fig. 7.  Magnetic field waveform under different gas injection: (a) 400 kPa/2.18 kA; (b) 800 kPa/2.50 kA.

    图 8  电流通道等离子体的发射光谱 (a) t = 9 μs; (b) t = 15 μs

    Fig. 8.  Current channel plasma emission spectrum: (a) t = 9 μs; (b) t = 15 μs.

    图 9  轨道两端电压随时间的变化

    Fig. 9.  Rail electrode voltage as a function of time.

  • [1]

    Ziemer J K, Choueiri E Y 2001 Plasma Sources Sci. Technol. 10 395Google Scholar

    [2]

    Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232Google Scholar

    [3]

    Loebner K T K, Underwood T C, Wang B C, Cappelli M A 2016 IEEE Trans. Plasma Sci. 44 1534Google Scholar

    [4]

    蔡明辉, 吴逢时, 李宏伟, 韩建伟 2014 物理学报 63 019401Google Scholar

    Cai M H, Wu F S, Li H W, Han J W 2014 Acta Phys. Sin. 63 019401Google Scholar

    [5]

    Ticos C M, Scurtu A, Toader D, Banu N 2015 Rev. Sci. Instrum. 86 033509Google Scholar

    [6]

    高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 物理学报 61 145201Google Scholar

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar

    [7]

    Underwood T C, Loebner K T K, Cappelli M A 2017 High Energy Density Phys. 23 73Google Scholar

    [8]

    Zhang Y, Gilmore M, Hsu S C, Fisher D M, Lynn A G 2017 Phys. Plasmas 24 110702Google Scholar

    [9]

    Zhang Y, Fisher D M, Gilmore M, Hsu S C, Lynn A G 2018 Phys. Plasmas 25 055709Google Scholar

    [10]

    Hsu S C, Langendorf S J, Yates K C, Dunn J P, Brockington S, Case A, Cruz E, Witherspoon F D, Gilmore M A, Cassibry J T, Samulyak R, Stoltz P, Schillo K, Shih W, Beckwith K, Thio Y C F 2018 IEEE Trans. Plasma Sci. 46 1951Google Scholar

    [11]

    Thio Y C F, Hsu S C, Witherspoon F D, Cruz E, Case A, Langendorf S, Yates K, Dunn J, Cassibry J, Samulyak R, Stoltz P, Brockington S J, Williams A, Luna M, Becker R, Cook A 2019 Fusion Sci. Technol. 75 581Google Scholar

    [12]

    Yate K C, Langendorf S J, Hsu S C, Dunn J P, Brockington S, Case A, Cruz E, Witherspoon F D, Thio Y C F, Cassibry J T, Schillo K, Gilmore M 2020 Phys. Plasmas 27 062706Google Scholar

    [13]

    赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 105203Google Scholar

    Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar

    [14]

    漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 035203Google Scholar

    Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203Google Scholar

    [15]

    Markusic T E, Choueiri E Y, Berkery J W 2004 Phys. Plasmas 11 4847Google Scholar

    [16]

    Berkery J W, Choueiri E Y 2006 Plasma Sources Sci. Technol. 15 64Google Scholar

    [17]

    刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 物理学报 67 065201Google Scholar

    Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar

    [18]

    Poehlmann F R, Cappelli M A, Rieker G B 2010 Phys. Plasmas 17 123508Google Scholar

    [19]

    Cheng D Y 1970 Nucl. Fusion 10 305Google Scholar

    [20]

    Loebner K T K, Underwood T C, Cappelli M A 2015 Phys. Rev. Lett. 115 175001Google Scholar

    [21]

    Loebner K T K, Underwood T C, Mouratidis T, Cappelli M A 2016 Appl. Phys. Lett. 108 094104Google Scholar

    [22]

    Subramaniam V, Panneerchelvam P, Raja L L 2018 J. Phys. D:Appl. Phys. 51 215203Google Scholar

    [23]

    Sitaraman H, Raja L L 2014 Phys. Plasmas 21 012104Google Scholar

    [24]

    Woodall D M, Len L K 1985 J. Appl. Phys. 57 961Google Scholar

    [25]

    Subramaniam V, Underwood T C, Raja L L, Cappelli M A 2018 Plasma Sources Sci. Technol. 27 025016Google Scholar

    [26]

    Liu S, Huang Y Z, Guo H S, Lin T Y, Huang D, Yang L J 2018 Phys. Plasmas 25 053506Google Scholar

    [27]

    Liu S, Huang Y Z, Zhang Y P, Zhan W, Yu M H, Yang L J 2018 Phys. Plasmas 25 113505Google Scholar

    [28]

    Huba J D 2013 NRL Plasma Formulary (Washington: Naval Research Laboratory)

    [29]

    Xiao D M 2016 Gas Discharge and Gas Insulation (Shanghai: Shanghai Jiao Tong University Press) pp47–88

  • [1] 刘帅, 徐涛, 刘康琪, 张永鹏, 杨兰均. 静态气压下平行轨道加速器电流分布与等离子体速度特性. 物理学报, 2023, 72(19): 195202. doi: 10.7498/aps.72.20231007
    [2] 谢盈, 朱志刚, 张晓锋, 任国栋. 光电流驱动下非线性神经元电路的放电模式控制. 物理学报, 2021, 70(21): 210502. doi: 10.7498/aps.70.20210676
    [3] 张洪铭, 吴静, 李佳鲜, 姚列明, 徐江城, 吴岩占, 刘旗艳, 郭鹏程. HL-2A高约束先进运行模式等离子体电流剖面集成模拟. 物理学报, 2021, 70(23): 235203. doi: 10.7498/aps.70.20210945
    [4] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生. 放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响. 物理学报, 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [5] 刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均. 平行轨道加速器等离子体动力学特性研究. 物理学报, 2018, 67(6): 065201. doi: 10.7498/aps.67.20172403
    [6] 李振华, 周国华, 刘啸天, 冷敏瑞. 电感电流伪连续导电模式下Buck变换器的动力学建模与分析. 物理学报, 2015, 64(18): 180501. doi: 10.7498/aps.64.180501
    [7] 石磊, 冯士维, 石帮兵, 闫鑫, 张亚民. 开态应力下电压和电流对AlGaN/GaN高电子迁移率晶体管的退化作用研究. 物理学报, 2015, 64(12): 127303. doi: 10.7498/aps.64.127303
    [8] 沙金, 许建平, 许丽君, 钟曙. 电流型脉冲序列控制Buck变换器工作在电感电流连续导电模式时的多周期行为. 物理学报, 2014, 63(24): 248401. doi: 10.7498/aps.63.248401
    [9] 谭程, 梁志珊, 张举丘. 电感电流伪连续模式下分数阶Boost变换器的非线性控制. 物理学报, 2014, 63(20): 200502. doi: 10.7498/aps.63.200502
    [10] 向俊杰, 毕闯, 向勇, 张千, 王京梅. 峰值电流模式控制同步开关Z源变换器的动力学研究. 物理学报, 2014, 63(12): 120507. doi: 10.7498/aps.63.120507
    [11] 谭程, 梁志珊. 电感电流伪连续模式下Boost变换器的分数阶建模与分析. 物理学报, 2014, 63(7): 070502. doi: 10.7498/aps.63.070502
    [12] 沙金, 包伯成, 许建平, 高玉. 脉冲序列控制电流断续模式Buck变换器的动力学建模与边界碰撞分岔. 物理学报, 2012, 61(12): 120501. doi: 10.7498/aps.61.120501
    [13] 李冠林, 李春阳, 陈希有, 牟宪民. 电流模式SEPIC变换器倍周期分岔现象研究. 物理学报, 2012, 61(17): 170506. doi: 10.7498/aps.61.170506
    [14] 王发强, 马西奎. 电感电流连续模式下Boost变换器的分数阶建模与仿真分析. 物理学报, 2011, 60(7): 070506. doi: 10.7498/aps.60.070506
    [15] 包伯成, 周国华, 许建平, 刘中. 斜坡补偿电流模式控制开关变换器的动力学建模与分析. 物理学报, 2010, 59(6): 3769-3777. doi: 10.7498/aps.59.3769
    [16] 王海霞, 殷 雯. 周期耦合量子阱中的输运问题. 物理学报, 2008, 57(5): 2669-2673. doi: 10.7498/aps.57.2669
    [17] 郭玉献, 王 劼, 李红红, 徐彭寿, 王 锋, 闫文盛. 样品电流模式下外磁场引起的X射线吸收谱强度变化. 物理学报, 2007, 56(1): 561-568. doi: 10.7498/aps.56.561
    [18] 许光明, 郑佳伟, 刘 勇, 崔建忠. 电磁场作用下溶质元素在镁合金AZ61的分布. 物理学报, 2007, 56(7): 4247-4251. doi: 10.7498/aps.56.4247
    [19] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动. 物理学报, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [20] 梁芳营, 李汉明, 李英骏. 超导环电流的研究. 物理学报, 2006, 55(2): 830-833. doi: 10.7498/aps.55.830
计量
  • 文章访问数:  3607
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-12
  • 修回日期:  2021-06-05
  • 上网日期:  2021-10-05
  • 刊出日期:  2021-10-20

/

返回文章
返回