x

## 留言板

 引用本文:
 Citation:

## Non-linear control for the fractional boost converter in pseudo continuous conduction mode

Tan Cheng, Liang Zhi-Shan, Zhang Ju-Qiu
PDF

#### Abstract

Based on the fact that the inductor and the capacitor are of fractional order in nature, the mathematical model of the fractional order boost converter in pseudo continuous conduction mode is established by using the fractional order calculus theory. Due to the affine non-linear nature in this mathematical model and a similar Lyapunov stability theorem of the fractional order system, a fractional order non-linear controller is designed. On the basis of chain fractance and the improved Oustaloup algorithm, the circuit model of fractional order inductor and capacitor are built. The fractional order controller is verified by the Matlab/Simulink software. Simulation results show that the controller enhances the dynamic and steady-state performance, so as to realize the stability and achieve good dynamic performance of the fractional order system during large fluctuation of power supply and load disturbance.

#### 作者及机构信息

###### 1. 中国石油大学(北京)地球物理与信息工程学院, 北京 102249
• 基金项目: 国家自然科学基金（批准号：51071176）和中国石油大学（北京）前瞻导向基金（批准号：2010QZ03）资助的课题.

#### Authors and contacts

###### 1. College of Geophysics and Information Engineering, China University of Petroleum (Beijing), Beijing 102249, China
• Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51071176) and the China University of Petroleum (Beijing) Frontier Foundation (Grant No. 2010QZ03).

#### 参考文献

 [1] Koeller R C 1986 Acta Mech. 58 251 [2] Sun H H, Abdelwahab A A, Onaral B 1984 IEEE Trans. Automatic Control 29 441 [3] Bagley R L, Torvik P J 1983 J. Rheol. 27 201 [4] Suwat K 2012 Comput. Math. Appl. 63 183 [5] Wu X J, Wang H, Lu H T 2012 Nonlin. Anal. Real World Appl. 13 1441 [6] Yang S P, Zhang R X 2008 Acta Phys. Sin. 57 6837 (in Chinese) [杨世平, 张若洵 2008 物理学报 57 6837] [7] Shokooh A, Suarez L 1999 J. Vib. Control 5 331 [8] Jonscher A K 1999 J. Phys. D: Appl. Phys. 32 R57 [9] Westerlund S, Ekstam L 1994 IEEE Trans. Dielectr. Electr. Insulat. 1 826 [10] Westerlund S 1991 Phys. Scripta 43 174 [11] Bohannan G W 2002 Proceedings of the 41st IEEE International Conference on Decision and Control, Tutorial Workshop 2: Fractional Calculus Applications in Automatic Control and Robotics Las Vegas, USA, December 10-13, 2002 p1 [12] Westerlund S 2002 Dead Matter Has Memory (Kalmar, Sweden: Causal Consulting) chapt. 7 [13] Wang F Q, Ma X K 2013 Sci. Sin. Technol. 43 368 (in Chinese) [王发强, 马西奎 2013 中国科学: 技术科学 43 368] [14] Tan C, Liang Z S 2014 Acta Phys. Sin. 63 070502 (in Chinese) [谭程, 梁志珊 2014 物理学报 63 070502] [15] Zhang F, Xu J P, Yang P 2012 Proceedings of the CSEE 32 56 (in Chinese) [张斐, 许建平, 杨平 2012 中国电机工程学报 32 56] [16] Kanakadabai V 2002 IEEE Trans. Power Electron. 17 677 [17] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press) chapt 1-2, 4 [18] Matigon D 1996 IMACS IEEE SMC Proceeding Conference Lille, France, July 9-12, 1996 p963 [19] Hu J B, Zhao L D 2013 Acta Phys. Sin. 62 240504 (in Chinese) [胡建兵, 赵灵冬 2013 物理学报 62 240504] [20] Wang F Q, Ma X K 2013 Chin. Phys. B 22 030506 [21] Xue D Y, Chen Y Q 2007 MATLAB Solutions to Mathematical Problems in Control (Beijing: Tsinghua University Press) pp435-460 (in Chinese) [薛定宇, 陈阳泉 2007 控制数学问题的MATLAB求解(北京: 清华大学出版社) 第435–460页]

#### 施引文献

•  [1] Koeller R C 1986 Acta Mech. 58 251 [2] Sun H H, Abdelwahab A A, Onaral B 1984 IEEE Trans. Automatic Control 29 441 [3] Bagley R L, Torvik P J 1983 J. Rheol. 27 201 [4] Suwat K 2012 Comput. Math. Appl. 63 183 [5] Wu X J, Wang H, Lu H T 2012 Nonlin. Anal. Real World Appl. 13 1441 [6] Yang S P, Zhang R X 2008 Acta Phys. Sin. 57 6837 (in Chinese) [杨世平, 张若洵 2008 物理学报 57 6837] [7] Shokooh A, Suarez L 1999 J. Vib. Control 5 331 [8] Jonscher A K 1999 J. Phys. D: Appl. Phys. 32 R57 [9] Westerlund S, Ekstam L 1994 IEEE Trans. Dielectr. Electr. Insulat. 1 826 [10] Westerlund S 1991 Phys. Scripta 43 174 [11] Bohannan G W 2002 Proceedings of the 41st IEEE International Conference on Decision and Control, Tutorial Workshop 2: Fractional Calculus Applications in Automatic Control and Robotics Las Vegas, USA, December 10-13, 2002 p1 [12] Westerlund S 2002 Dead Matter Has Memory (Kalmar, Sweden: Causal Consulting) chapt. 7 [13] Wang F Q, Ma X K 2013 Sci. Sin. Technol. 43 368 (in Chinese) [王发强, 马西奎 2013 中国科学: 技术科学 43 368] [14] Tan C, Liang Z S 2014 Acta Phys. Sin. 63 070502 (in Chinese) [谭程, 梁志珊 2014 物理学报 63 070502] [15] Zhang F, Xu J P, Yang P 2012 Proceedings of the CSEE 32 56 (in Chinese) [张斐, 许建平, 杨平 2012 中国电机工程学报 32 56] [16] Kanakadabai V 2002 IEEE Trans. Power Electron. 17 677 [17] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press) chapt 1-2, 4 [18] Matigon D 1996 IMACS IEEE SMC Proceeding Conference Lille, France, July 9-12, 1996 p963 [19] Hu J B, Zhao L D 2013 Acta Phys. Sin. 62 240504 (in Chinese) [胡建兵, 赵灵冬 2013 物理学报 62 240504] [20] Wang F Q, Ma X K 2013 Chin. Phys. B 22 030506 [21] Xue D Y, Chen Y Q 2007 MATLAB Solutions to Mathematical Problems in Control (Beijing: Tsinghua University Press) pp435-460 (in Chinese) [薛定宇, 陈阳泉 2007 控制数学问题的MATLAB求解(北京: 清华大学出版社) 第435–460页]
•  [1] 张方樱, 胡维, 陈新兵, 陈虹, 唐雄民. 基于状态关联性的Boost变换器混沌与反混沌控制. 物理学报, 2015, 64(4): 048401. doi: 10.7498/aps.64.048401 [2] 刘式达, 付遵涛, 刘式适. 间歇湍流的分数阶动力学. 物理学报, 2014, 63(7): 074701. doi: 10.7498/aps.63.074701 [3] 何圣仲, 周国华, 许建平, 吴松荣, 阎铁生, 张希. 谷值V2控制Boost变换器的精确建模与动力学分析. 物理学报, 2014, 63(17): 170503. doi: 10.7498/aps.63.170503 [4] 谭程, 梁志珊. 电感电流伪连续模式下Boost变换器的分数阶建模与分析. 物理学报, 2014, 63(7): 070502. doi: 10.7498/aps.63.070502 [5] 谢玲玲, 龚仁喜, 卓浩泽, 马献花. 电压模式控制不连续传导模式boost变换器切分岔研究. 物理学报, 2012, 61(5): 058401. doi: 10.7498/aps.61.058401 [6] 程为彬, 康思民, 汪跃龙, 汤楠, 郭颖娜, 霍爱清. 功率因数校正Boost变换器中快时标不稳定的形成与参数动态共振. 物理学报, 2011, 60(2): 020506. doi: 10.7498/aps.60.020506 [7] 杨红, 王瑞. 基于反馈和多最小二乘支持向量机的分数阶混沌系统控制. 物理学报, 2011, 60(7): 070508. doi: 10.7498/aps.60.070508 [8] 刘福才, 李俊义, 臧秀凤. 基于自适应主动及滑模控制的分数阶超混沌系统异结构反同步. 物理学报, 2011, 60(3): 030504. doi: 10.7498/aps.60.030504 [9] 黄丽莲, 何少杰. 分数阶状态空间系统的稳定性分析及其在分数阶混沌控制中的应用. 物理学报, 2011, 60(4): 044703. doi: 10.7498/aps.60.044703 [10] 马伟, 王明渝, 聂海龙. 单周期控制Boost变换器Hopf分岔控制及电路实现. 物理学报, 2011, 60(10): 100202. doi: 10.7498/aps.60.100202 [11] 王发强, 马西奎. 电感电流连续模式下Boost变换器的分数阶建模与仿真分析. 物理学报, 2011, 60(7): 070506. doi: 10.7498/aps.60.070506 [12] 赵灵冬, 胡建兵, 刘旭辉. 参数未知的分数阶超混沌Lorenz系统的自适应追踪控制与同步. 物理学报, 2010, 59(4): 2305-2309. doi: 10.7498/aps.59.2305 [13] 阎晓妹, 刘丁. 基于最小二乘支持向量机的分数阶混沌系统控制. 物理学报, 2010, 59(5): 3043-3048. doi: 10.7498/aps.59.3043 [14] 包伯成, 许建平, 刘中. 具有两个边界的Boost变换器分岔行为和斜坡补偿的镇定控制. 物理学报, 2009, 58(5): 2949-2956. doi: 10.7498/aps.58.2949 [15] 程为彬, 郭颖娜, 康思民, 汪跃龙, 霍爱清, 汤楠. Boost变换器中参数斜坡共振控制能力研究. 物理学报, 2009, 58(7): 4439-4448. doi: 10.7498/aps.58.4439 [16] 王发强, 张 浩, 马西奎. 单周期控制Boost变换器中的低频波动现象分析. 物理学报, 2008, 57(3): 1522-1528. doi: 10.7498/aps.57.1522 [17] 陈向荣, 刘崇新, 李永勋. 基于非线性观测器的一类分数阶混沌系统完全状态投影同步. 物理学报, 2008, 57(3): 1453-1457. doi: 10.7498/aps.57.1453 [18] 邵仕泉, 高 心, 刘兴文. 两个耦合的分数阶Chen系统的混沌投影同步控制. 物理学报, 2007, 56(12): 6815-6819. doi: 10.7498/aps.56.6815 [19] 卢伟国, 周雒维, 罗全明, 杜 雄. BOOST变换器延迟反馈混沌控制及其优化. 物理学报, 2007, 56(11): 6275-6281. doi: 10.7498/aps.56.6275 [20] 周宇飞, 陈军宁, 谢智刚, 柯导明, 时龙兴, 孙伟锋. 参数共振微扰法在Boost变换器混沌控制中的实现及其优化. 物理学报, 2004, 53(11): 3676-3683. doi: 10.7498/aps.53.3676
• 文章访问数:  4586
• PDF下载量:  821
• 被引次数: 0
##### 出版历程
• 收稿日期:  2014-04-29
• 修回日期:  2014-05-22
• 刊出日期:  2014-10-05

/