-
基于可压缩多组分Navier-Stokes方程, 结合5阶WENO (weighted essentially non-oscillatory)格式以及结构化自适应网格加密技术, 数值研究了汇聚激波冲击不同初始扰动幅值和气层厚度的双层SF6重气柱界面不稳定性演化过程, 揭示了界面与激波结构相互作用及演变机理, 定量分析了环量、混合率及湍动能的变化规律, 并对涡量进行动模态分解. 结果表明: 初始扰动幅值较大的条件下, 气层内界面内外均形成马赫反射结构并在中心发生多次激波聚焦, 激波穿透外界面后环量增速更大, 内界面“尖钉”“气泡”更早发展, 内外界面幅值与混合率增速更大. 气层厚度较大时, 透射激波在重气柱内移动时相位发生改变, 使得内界面波峰向外发展而波谷向内发展. 气层厚度较小时, 内界面生成“尖钉”“气泡”较晚且不明显. 通过动模态分解可以发现: 耦合效应弱时, 低频弱增长的动模态决定了主干结构, 低频弱增长的动模态决定了主干结构上正负涡量的交换, 而高频弱增长的动模态决定了界面上正负涡量的快速交换.
-
关键词:
- 汇聚激波 /
- 双层重气柱 /
- Richtmyer-Meshkov不稳定性
Based on Navier-Stokes equations, combining the fifth-order weighted essentially non-oscillatory scheme with the adaptive structured grid refinement technique, the interactions between converging shock and annular SF6 layers with different initial perturbation amplitudes and thickness are numerically investigated. The evolution mechanism of shock structure and interface are revealed in detail, and the variations of the circulation, mixing rate and turbulent kinetic energy are quantitatively analyzed. The dynamic mode decomposition method is used to analyze the dynamic characteristics of the vorticity. The results show that in the case with large initial perturbation amplitude, the transmitted shock wave forms Mach reflection structures both inside and outside of the inner interface of SF6 layer, and multiple shock focusing phenomena occur in the center. After the transmitted shock wave penetrates the outer interface, the circulation increases faster, and the “spike” and “bubble” structure on inner interface develop faster, so that the amplitude of the inner and outer interfaces and the gas mixing rate increase. As for the case with larger thickness of the gas layer, the phase of the transmitted shock wave changes inside the layer, which forms “bubble” at the crest of the inner interface and “spike” at the trough. When the thickness of the gas layer decreases, the crest of the inner interface does not move inside after being impacted, and “spike” and “bubble” are generated in the late stage. The dynamic modes show that the main structure of vorticity and the exchange of positive and negative vorticity on the main structure are determined by the modes with weak growth and low frequency, but the modes with weak growth and high frequency determine rapid exchange of positive and negative vorticity at the interface in the cases with weak coupling effect.[1] Yang J, Kubota T, Zukoski E E 1993 AIAA J. 31 854Google Scholar
[2] Cao L, Fei W L, Grosshans H, Cao N 2017 Appl. Sci. 7 880Google Scholar
[3] Lindl J D, McCrory R L, Campbell E M 1992 Phys. Today 45 32Google Scholar
[4] Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar
[5] Fraley G 1986 Phys. Fluids 29 376Google Scholar
[6] Haehn N, Ranjan D, Weber C, Oakley J G, Anderson M H, Bonazza R 2010 Phys. Scr. T142 014067Google Scholar
[7] Haehn N, Weber C, Oakley J, Anderson M, Ranjan D, Bonazza R 2012 Shock Waves 22 47Google Scholar
[8] Luo X S, Wang M H, Si T, Zhai Z G 2015 J. Fluid Mech. 773 366Google Scholar
[9] 沙莎, 陈志华, 薛大文, 张辉 2014 物理学报 63 085205Google Scholar
Sha S, Chen Z H, Xue D W, Zhang H 2014 Acta Phys. Sin. 63 085205Google Scholar
[10] Mikaelian K O 1990 Phys. Rev. A 42 3400Google Scholar
[11] Lombardini M, Pullin D I 2009 Phys. Fluids 21 114103Google Scholar
[12] Si T, Long T, Zhai Z G, Luo X S 2015 J. Fluid Mech. 784 225Google Scholar
[13] Ding J C, Si T, Yang J M, Lu X Y, Zhai Z G, Luo X S 2017 Phys. Rev. Lett. 119 014501Google Scholar
[14] Ding J C, Li J M, Sun R, Zhai Z G, Luo X S 2019 J. Fluid Mech. 878 277Google Scholar
[15] Mikaelian K O 1995 Phys. Fluids 7 888Google Scholar
[16] Sun R, Ding J C, Zhai Z G, Si T, Luo X S 2020 J. Fluid Mech. 902 A3Google Scholar
[17] Li J M, Ding J C, Si T, Luo X S 2020 J. Fluid Mech. 884 R2Google Scholar
[18] 徐建于, 黄生洪 2019 力学学报 51 998Google Scholar
Xu J Y, Huang S H 2019 Chin. J. Theor. Appl. Mech. 51 998Google Scholar
[19] 梁煜, 关奔, 翟志刚, 罗喜胜 2017 物理学报 66 064701Google Scholar
Liang Y, Guan B, Zhai Z G, Luo X S 2017 Acta Phys. Sin. 66 064701Google Scholar
[20] Zhou Z B, Ding J C, Zhai Z G, Cheng W, Luo X S 2020 Acta Mech. Sin. 36 356Google Scholar
[21] Tang J G, Zhang F, Luo X S, Zhai Z G 2020 Acta Mech. Sin. 37 434Google Scholar
[22] 何惠琴, 翟志刚, 司廷, 罗喜胜 2016 计算物理 33 66Google Scholar
He H Q, Zhai Z G, Si T, Luo X S 2016 Chin. J. Comput. Phys. 33 66Google Scholar
[23] Fu Y W, Yu C P, Li X L 2020 AIP Adv. 10 105302Google Scholar
[24] Lombardini M, Hill D J, Pullin D I, Meiron D I 2011 J. Fluid Mech. 670 439Google Scholar
[25] Hill D J, Pullin D I 2004 J. Comput. Phys. 194 435Google Scholar
[26] Pantano C, Deiterding R, Hill D J, Pullin D I 2007 J. Comput. Phys. 221 63Google Scholar
[27] Henry D, Movahed P, Johnsen E 2015 Shock Waves 25 329Google Scholar
-
图 4 case 1的界面与激波结构演变过程示意图(ts, 透射激波; rs, 反射激波; rrw, 反射稀疏波; m, 马赫杆; T, 三波点; SF, 激波聚焦; srs, 二次反射激波; spike, “尖钉”结构; bubble, “气泡”结构; sts, 二次透射激波; trs, 三次反射激波; tts, 三次透射激波; 下文符号含义相同)
Fig. 4. Evolution of the interface and shock wave structures of case 1 (ts, transmitted shock; rs, reflected shock; rrw, reflected rarefaction wave; m, Mach stem; T, triple point; SF, shock focusing; srs, the second reflected shock; spike, “spike” structure; bubble; “bubble” structure; sts, the second transmitted shock; trs, the third reflected shock; tts, the third transmitted shock. The meaning of these abbreviations is similar hereinafter).
表 1 不同双层重气柱几何参数表
Table 1. Structural parameters of cylinder of different cases.
Case R0/mm r0/mm a0/mm n λ/mm a0/λ Case 1 20 10 1 6 20.94 0.048 Case 2 20 10 0.5 6 20.94 0.024 Case 3 20 10 2 6 20.94 0.096 Case 4 20 5 1 6 20.94 0.048 Case 5 20 15 1 6 20.94 0.048 表 2 气体参数表
Table 2. Parameters of gases.
Gas γ M/(g·mol–1) ρ/(kg·m–3) Air 1.399 28.967 1.23 SF6 1.103 128.491 5.45 -
[1] Yang J, Kubota T, Zukoski E E 1993 AIAA J. 31 854Google Scholar
[2] Cao L, Fei W L, Grosshans H, Cao N 2017 Appl. Sci. 7 880Google Scholar
[3] Lindl J D, McCrory R L, Campbell E M 1992 Phys. Today 45 32Google Scholar
[4] Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar
[5] Fraley G 1986 Phys. Fluids 29 376Google Scholar
[6] Haehn N, Ranjan D, Weber C, Oakley J G, Anderson M H, Bonazza R 2010 Phys. Scr. T142 014067Google Scholar
[7] Haehn N, Weber C, Oakley J, Anderson M, Ranjan D, Bonazza R 2012 Shock Waves 22 47Google Scholar
[8] Luo X S, Wang M H, Si T, Zhai Z G 2015 J. Fluid Mech. 773 366Google Scholar
[9] 沙莎, 陈志华, 薛大文, 张辉 2014 物理学报 63 085205Google Scholar
Sha S, Chen Z H, Xue D W, Zhang H 2014 Acta Phys. Sin. 63 085205Google Scholar
[10] Mikaelian K O 1990 Phys. Rev. A 42 3400Google Scholar
[11] Lombardini M, Pullin D I 2009 Phys. Fluids 21 114103Google Scholar
[12] Si T, Long T, Zhai Z G, Luo X S 2015 J. Fluid Mech. 784 225Google Scholar
[13] Ding J C, Si T, Yang J M, Lu X Y, Zhai Z G, Luo X S 2017 Phys. Rev. Lett. 119 014501Google Scholar
[14] Ding J C, Li J M, Sun R, Zhai Z G, Luo X S 2019 J. Fluid Mech. 878 277Google Scholar
[15] Mikaelian K O 1995 Phys. Fluids 7 888Google Scholar
[16] Sun R, Ding J C, Zhai Z G, Si T, Luo X S 2020 J. Fluid Mech. 902 A3Google Scholar
[17] Li J M, Ding J C, Si T, Luo X S 2020 J. Fluid Mech. 884 R2Google Scholar
[18] 徐建于, 黄生洪 2019 力学学报 51 998Google Scholar
Xu J Y, Huang S H 2019 Chin. J. Theor. Appl. Mech. 51 998Google Scholar
[19] 梁煜, 关奔, 翟志刚, 罗喜胜 2017 物理学报 66 064701Google Scholar
Liang Y, Guan B, Zhai Z G, Luo X S 2017 Acta Phys. Sin. 66 064701Google Scholar
[20] Zhou Z B, Ding J C, Zhai Z G, Cheng W, Luo X S 2020 Acta Mech. Sin. 36 356Google Scholar
[21] Tang J G, Zhang F, Luo X S, Zhai Z G 2020 Acta Mech. Sin. 37 434Google Scholar
[22] 何惠琴, 翟志刚, 司廷, 罗喜胜 2016 计算物理 33 66Google Scholar
He H Q, Zhai Z G, Si T, Luo X S 2016 Chin. J. Comput. Phys. 33 66Google Scholar
[23] Fu Y W, Yu C P, Li X L 2020 AIP Adv. 10 105302Google Scholar
[24] Lombardini M, Hill D J, Pullin D I, Meiron D I 2011 J. Fluid Mech. 670 439Google Scholar
[25] Hill D J, Pullin D I 2004 J. Comput. Phys. 194 435Google Scholar
[26] Pantano C, Deiterding R, Hill D J, Pullin D I 2007 J. Comput. Phys. 221 63Google Scholar
[27] Henry D, Movahed P, Johnsen E 2015 Shock Waves 25 329Google Scholar
计量
- 文章访问数: 3485
- PDF下载量: 37
- 被引次数: 0