搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属锡Richtmyer-Meshkov不稳定性的高应变率强度行为研究

王曦 彭建祥 胡晓棉 俞宇颖 胡建波 殷建伟 潘昊 吴子辉

引用本文:
Citation:

金属锡Richtmyer-Meshkov不稳定性的高应变率强度行为研究

王曦, 彭建祥, 胡晓棉, 俞宇颖, 胡建波, 殷建伟, 潘昊, 吴子辉

Strength Behavior of Tin at High Strain Rate in Richtmyer-Meshkov Instability

WANG Xi, PENG Jianxiang, HU Xiaomian, YU Yuying, HU Jianbo, YIN Jianwei, PAN Hao, WU Zihui
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 强度应变率效应是动态本构模型研究的关键问题,金属自由面Richtmyer-Meshkov不稳定性实验反应了极端高应变率下材料强度行为。本文针对冲击压力5.5GPa的锡自由面Richtmyer-Meshkov不稳定性实验,采用三种本构模型进行模拟。基于弹性理想塑性模型获得与实验一致的自由面扰动尖钉速度极大值即可获得锡材料等效强度,发现强度在~106s-1应变率时比准静态~10-4s-1应变率增大约64倍,应变率硬化十分显著。弹性理想塑性模型和Steinberg-Cochran-Guinan模型虽能捕捉尖钉速度极大值,但却无法复现实验中速度下降的卸载过程;而引入应变率效应的应力松弛模型获得了与实验一致的整个尖钉速度历程。揭示了强度应变率效应的影响贯穿扰动发展过程,将可供动态本构模型研究的实验数据从单一速度极大值拓展为全过程速度曲线,大幅提升了实验数据的利用效率,对极端高应变率下动态本构模型研究具有重要价值。
    The strain rate effect on strength is a key issue in the study of dynamic constitutive models, and the Richtmyer-Meshkov instability experiment on the free surface of metal reflects the strength behavior under extremely high strain rates. After the shock wave propagates to the free surface and undergoes unloading, the metal enters a near-ambient pressure state and exceed 106s-1 strain rate. The initial sinusoidal perturbation exhibits phase inversion trend of forming spike and bubble structures, while the development of the perturbation gradually stabilizes under the suppression effect of material strength. In the initial research, equivalent strength of metal under high strain rate is usually estimated by total spike growth for perturbation evolutions. Subsequent studies found that the maximum value of the spike velocity which can be directly measured could be the metric to determine equivalent strength. However, the influence of the non-uniformity of strength on the development of spike velocity has not been explored. Tin is a critical material in the study of dynamic mechanical behavior under extreme conditions. Currently, the experiment of dynamic strength on tin usually couple multiple effects such as strain rate, pressure, and phase transitions. Richtmyer-Meshkov (RM) instability experiment, as a method to isolate high strain rate effect, at the free surface of tin have not been publicly reported. The characteristics of tin dynamic strength behavior under extremely high strain rates remain unclear. This study conducts numerical simulations on the Richtmyer-Meshkov instability experiment of a tin sample with a pre-imposed sinusoidal perturbation (amplitude 0.15 mm, wavelength 0.8 mm) under shock pressure 5.5GPa. Using a self-developed two-dimensional explicit finite element program for elastoplastic hydrodynamics, the simulation results of three constitutive models, including elastic-perfectly plastic model, Steinberg-Cochran-Guinan model, and stress relaxation model, on the spike velocity curves are compared with the measured one. The equivalent strength of tin can be evaluated by obtaining consistent maximum spike velocity of free surface perturbation between calculation with elastic-perfectly plastic model and experiment. It is found that the strength increases by about 64 times at strain rate ~106s-1 compared to the quasi-static strain rate ~10-4s-1, indicating strain rate hardening is extraordinarily significant. By adjusting model parameters, both the elastic-perfectly plastic model and Steinberg-Cochran-Guinan model could capture the maximum spike velocity but failed to reproduce the unloading process observed in experiments. Compared to the experimental results, the calculated spike velocity decreases too rapidly. In contrast, stress relaxation model due to considering strain rate effects achieve excellent agreement with the entire experimental spike velocity history, not only capturing the peak velocity but also resolving the issue of overly rapid velocity decay. This demonstrates that the strain rate effect on material strength not only suppresses the maximum spike velocity but also influences the deceleration stage, revealing that the impact of strain rate effects persists throughout different stages of perturbation development. The study shows that the experiment data available for dynamic constitutive model research are expanded from a single peak velocity value to the complete velocity history. The utilization efficiency of experimental data is greatly improved, presenting important values for the study of dynamic constitutive models under extremely high strain rates.
  • [1]

    Richtmyer R D 1960. Commun. Pure Appl. Math. 13 297

    [2]

    Meshkov E E 1969 Sov. Fluid Dyn. 4 101

    [3]

    Zhou Y 2017 Phys. Rep. 720 1

    [4]

    Zhou Y, Williams R J R, Ramaprabhu P, Groom M, Thornber B, Hillier A, Mostert W, Rollin B, Balachandar S, Powell P D, Mahalov A, Attal N 2021 Physica D 423 132838

    [5]

    Plohr J N, Plohr B J 2005 J. Fluid Mech. 537 55

    [6]

    Mikaelian K O 2013 Phys. Rev. E 87 031003

    [7]

    Piriz A R, López Cela J J, Tahir N A, Hoffmann D H H 2008 Phys. Rev. E 78 056401

    [8]

    Piriz A R, López Cela J J, Tahir N A 2009 Nucl. Instrum. Methods Phys. Res. 606 139

    [9]

    Dimonte G, Terrones G, Cherne F J, Germann T C, Dupont V, Kadau K, Buttler W T, Oró D M, Morris C, Preston D L 2011 Phys. Rev. Lett. 107 264502

    [10]

    Buttler W T, Oró D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60

    [11]

    Prime M B, Buttler W T, Buechler M A, Denissen N A, Kenamond M A, Mariam F G, Martinez J I, Oró D M, Schmidt D W, Stone J B, Tupa D, Vogan-McNeil W 2017 J. Dyn. Behav. Mater. 3, 189

    [12]

    Prime M B, Buttler W T, Fensin S J, Jones D R, Brown J L, King R S, Manzanares R, Martinez D T, Martinez J I, Payton J R, Schmidt Q W 2019 Phys. Rev. E 100 053002

    [13]

    Lear C R, Chancey M R, Flanagan R, Gigax J G, Hoang M T, Jones D R, Kim H, Martinez D T, Morrow B W, Mathew N, Wang Y, Li N, Payton J R, Prime M B, Fensin S J 2023 Acta Mater. 254 118987

    [14]

    Whiteman G, Adams B, Thorington-Jones B, Turner J G 2023 AIP Conf.erence Proceedings. AIP Publishing 2844 370007

    [15]

    Prime M B, Fensin S J, Jones D R, Dyer J W, Martinez D T 2024 Phys. Rev. E 109 015002

    [16]

    Soares G C, Hokka M 2021 Int. J. Impact Eng. 156 103940

    [17]

    Schill W, Austin R, Brown J, Barton N 2021 J. Dyn. Behav. Mater. 7 207

    [18]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

    [19]

    Cox G A 2006 AIP Conf.conference Proc.proceedings American Institute of Physics 845 208

    [20]

    Briggs R, Daisenberger D, Lord O T, Salamat A, Bailey E, Walter M J, McMillan P F 2017 Phys. Rev. B 95 054102

    [21]

    Steinberg D J 1996 Lawrence Livermore National laboratory UCRL-MA-106439

    [22]

    Yin J W 2018 Ph. D. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese) [殷建伟 2018 博士学位论文(北京:北京理工大学)]

    [23]

    Wang X, Hu X M, Wang S T, Pan H, Yin J W 2021 Sci. Rep. 11 18049

    [24]

    Wang X, Hu X M, Wang S T, Pan H, Yin J W 2023 Sci. Rep. 13 2686

    [25]

    Tan H 2018 Experimental Shock Wave Physics (Beijing: National Defense Industry Press) p9 (in Chinese) [谭华 2018 实验冲击波物理(北京:国防工业出版社) 第9页]

    [26]

    Weng J D, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 11.

    [27]

    Vogler T J 2009 J. Appl. Phys. 106 5.

  • [1] 张升博, 张焕好, 张军, 毛勇建, 陈志华, 石启陈, 郑纯. 激波与轻质气柱作用过程的磁场抑制特性. 物理学报, doi: 10.7498/aps.73.20231916
    [2] 孙贝贝, 叶文华, 张维岩. 密度扰动的类Richtmyer-Meshkov不稳定性增长及其与无扰动界面耦合的数值模拟. 物理学报, doi: 10.7498/aps.72.20230928
    [3] 张升博, 张焕好, 陈志华, 郑纯. 不同界面组分分布对Richtmyer-Meshkov不稳定性的影响. 物理学报, doi: 10.7498/aps.72.20222090
    [4] 党子涵, 郑纯, 张焕好, 陈志华. 汇聚激波诱导具有正弦扰动双层重气柱界面的演化机理. 物理学报, doi: 10.7498/aps.71.20221012
    [5] 袁永腾, 涂绍勇, 尹传盛, 李纪伟, 戴振生, 杨正华, 侯立飞, 詹夏宇, 晏骥, 董云松, 蒲昱东, 邹士阳, 杨家敏, 缪文勇. 冲击波波后辐射效应对Richtmyer-Meshkov不稳定性增长影响的实验研究. 物理学报, doi: 10.7498/aps.70.20210653
    [6] 沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈. 纵向磁场抑制Richtmyer-Meshkov不稳定性机理. 物理学报, doi: 10.7498/aps.69.20200363
    [7] 董国丹, 郭则庆, 秦建华, 张焕好, 姜孝海, 陈志华, 沙莎. 不同磁场构型下Richtmyer-Meshkov不稳定性的数值研究及动态模态分解. 物理学报, doi: 10.7498/aps.68.20190410
    [8] 董国丹, 张焕好, 林震亚, 秦建华, 陈志华, 郭则庆, 沙莎. 磁控条件下激波冲击三角形气柱过程的数值研究. 物理学报, doi: 10.7498/aps.67.20181127
    [9] 李冬冬, 王革, 张斌. 激波作用不同椭圆氦气柱过程中流动混合研究. 物理学报, doi: 10.7498/aps.67.20180879
    [10] 李俊涛, 孙宇涛, 胡晓棉, 任玉新. 激波冲击V形界面重气体导致的壁面与旋涡作用及其对湍流混合的影响. 物理学报, doi: 10.7498/aps.66.235201
    [11] 李俊涛, 孙宇涛, 潘建华, 任玉新. 冲击加载下V形界面的失稳与湍流混合. 物理学报, doi: 10.7498/aps.65.245202
    [12] 沙莎, 陈志华, 张庆兵. 激波与SF6球形气泡相互作用的数值研究. 物理学报, doi: 10.7498/aps.64.015201
    [13] 沙莎, 陈志华, 薛大文, 张辉. 激波与SF6梯形气柱相互作用的数值模拟. 物理学报, doi: 10.7498/aps.63.085205
    [14] 周洪强, 于明, 孙海权, 董贺飞, 张凤国. 炸药爆轰的连续介质本构模型和数值计算方法. 物理学报, doi: 10.7498/aps.63.224702
    [15] 王云飞, 李云凯, 孙川, 朱灵波, 缪勇, 陈雪冰. 钢动静态强度计算的电子理论模型. 物理学报, doi: 10.7498/aps.63.126101
    [16] 沙莎, 陈志华, 薛大文. 激波冲击R22重气柱所导致的射流与混合研究. 物理学报, doi: 10.7498/aps.62.144701
    [17] 霍新贺, 王立锋, 陶烨晟, 李英骏. 非理想流体中Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究. 物理学报, doi: 10.7498/aps.62.144705
    [18] 陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏. 任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究. 物理学报, doi: 10.7498/aps.61.075207
    [19] 侯日立, 彭建祥, 经福谦. 一种计算金属剪切模量的本构模型:以Al为例. 物理学报, doi: 10.7498/aps.58.6413
    [20] 陈大年, 范春雷, 胡金伟, 谭华, 王焕然, 吴善幸, 俞宇颖. 高导无氧铜的高压与高应变率本构模型研究. 物理学报, doi: 10.7498/aps.58.2612
计量
  • 文章访问数:  65
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-11

/

返回文章
返回