搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纵向磁场抑制Richtmyer-Meshkov不稳定性机理

沙莎 张焕好 陈志华 郑纯 吴威涛 石启陈

引用本文:
Citation:

纵向磁场抑制Richtmyer-Meshkov不稳定性机理

沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈

Mechanism of longitudinal magnetic field suppressed Richtmyer-Meshkov instability

Sha Sha, Zhang Huan-Hao, Chen Zhi-Hua, Zheng Chun, Wu Wei-Tao, Shi Qi-Chen
PDF
HTML
导出引用
  • 基于理想磁流体动力学方程组, 采用CTU (corner transport upwind) + CT (constrained transport)算法, 数值研究了磁场控制下R22气柱界面Richtmyer-Meshkov不稳定性的演化过程. 结果描述了平面激波冲击气柱界面过程中激波结构和界面不稳定性的发展; 无磁场时, 流场结构与Haas和Sturtevant (Hass J F, Sturtevant B 1987 J. Fluid Mech. 181 41)的实验结果相符; 施加纵向磁场后, 激波结构的演化基本无影响, 但明显抑制了气柱界面的不稳定性. 进一步研究表明, 激波与界面的作用, 使磁感线在界面上发生折射, 改变流场的磁场梯度, 在内外涡量层上形成磁张力. 磁张力的形成, 对界面流体产生一个与速度剪切相反的力矩, 抑制了界面的失稳及主涡的卷起. 另外, 磁张力沿界面分布的不均匀, 改变磁感线在界面上的聚集程度, 放大磁能量, 最终增强磁场对气柱界面不稳定性的抑制作用.
    Based on the ideal magneto-hydro-dynamic equations (MHD) and adopting the CTU (Corner Transport Upwind) + CT (Constrained Transport) algorithm, the Richtmyer-Meshkov (RM) instability of the Gaussian distribution R22 gas column generated by the interaction of a planar shock wave with the gas column in the presence of magnetic field is investigated numerically. The numerical results show that the evolution of shock wave structure and interface instability during the interaction between shock wave and gas column are consistent with the experimental results of Haas and Sturtevant (Hass J F, Sturtevant B 1987 J. Fluid Mech. 181 41) in the absence of a magnetic field. In the presence of a longitudinal magnetic field, the evolution of the shock structures is almost unaffected, while the density interface appears very smooth and interfacial vortex sequences vanish, which is a clear indication of the RMI suppresion. Moreover, as the shock wave impinges on the interface, the magnetic field lines refract on the interface, resulting in the generation of magnetic field gradient in the flow field, which is not consistent with the scenario in the above case. As a result, a stronger magnetic tension is produced on the inner and outer vorticity layer. Simultaneously, the magnetic tension produces a moment on the interface fluid, which is opposite to the rolling direction of the velocity shear. Therefore, the interface instability and the main vortex rolling-up are effectively suppressed. In addition, the non-uniform distribution of magnetic tensions along the interface changes the aggregation degree of the magnetic lines, amplifying the magnetic strength, and finally enhancing the suppression effect of the magnetic field on the interface instability.
      通信作者: 张焕好, zhanghuanhao@njust.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11702005)、国家自然科学基金(批准号: 12072162)和中央高校基本科研业务费专项资金(批准号: 30919011260)资助的课题
      Corresponding author: Zhang Huan-Hao, zhanghuanhao@njust.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11702005), the National Natural Science Foundation of China (Grant No. 12072162), and the Fundamental Research Funds for the Central Universities of China (Grant No. 30919011260)
    [1]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar

    [2]

    Meshkov E E 1969 Fluid Dyn. 4 101Google Scholar

    [3]

    Lindl J D, McCrory R L, Campbell E M 1992 Phys. Today 45 32Google Scholar

    [4]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Steven W, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [5]

    Lindl J D, Otto Landen O, Edwards J, Moses E 2014 Phys. Plasmas 21 020501Google Scholar

    [6]

    Yang J D, Kubota T, and Zukoski E E 1993 AIAA J. 31 854Google Scholar

    [7]

    Samtaney R 2003 Phys. Fluids 15 53Google Scholar

    [8]

    Hawley J F, Zabusky N J 1989 Phys. Rev. Lett. 63 1241Google Scholar

    [9]

    Wheatley V, Pullin D I, Samtaney R 2005 Phys. Rev. Lett. 95 125002Google Scholar

    [10]

    Wheatley V, Samtaney R, Pullin D I 2009 Phys. Fluids 21 082102Google Scholar

    [11]

    Wheatley V, Samtaney R, Pullin D I, Gehre R M 2014 Phys. Fluids 26 016102Google Scholar

    [12]

    Cao J, Wu Z, Ren H, Li D 2008 Phys. Plasmas 15 042102Google Scholar

    [13]

    Sano T, Nishihara K, Matsuoka C, Inoue T 2012 The Astrophys. J. 758 126Google Scholar

    [14]

    Mac Low M M, McKee C F, Klein R I 1994 The Astrophys. J. 433 757Google Scholar

    [15]

    Fragile P C, Anninos P, Gustafson K 2005 The Astrophys. J. 619 327Google Scholar

    [16]

    李源, 罗喜胜 2014 计算物理 31 659Google Scholar

    Li Y, Luo X S 2014 Chinese J. Comput. Phys. 31 659Google Scholar

    [17]

    董国丹, 张焕好, 林震亚, 秦建华, 陈志华, 郭则庆, 沙莎 2018 物理学报 67 204701Google Scholar

    Dong G D, Zhang H H, Lin Z Y, Qin J H, Chen Z H, Guo Z Q, Sha S 2018 Acta Phys. Sin. 67 204701Google Scholar

    [18]

    董国丹, 郭则庆, 秦建华, 张焕好, 姜孝海, 陈志华, 沙莎 2019 物理学报 68 165201Google Scholar

    Dong G D, Guo Z Q, Qin J H, Zhang H H, Jiang X H, Chen Z H, Sha S 2019 Acta Phys. Sin. 68 165201Google Scholar

    [19]

    沙莎, 陈志华, 薛大文 2013 物理学报 62 144701Google Scholar

    Sha S, Chen Z H, Xue D W 2013 Acta Phys. Sin. 62 144701Google Scholar

    [20]

    沙莎, 陈志华, 张庆兵 2015 物理学报 64 015201Google Scholar

    Sha S, Chen Z H, Zhang Q B 2015 Acta Phys. Sin. 64 015201Google Scholar

    [21]

    Lin Z Y, Zhang H H, Chen Z H, Liu Y, Hong Y J 2017 Int. J. Comput. Fluid D. 31 21Google Scholar

    [22]

    林震亚, 张焕好, 陈志华, 刘迎 2017 爆炸与冲击 37 748Google Scholar

    Lin Z Y, Zhang H H, Chen Z H, Liu Y 2017 Explosion and Shock Waves 37 748Google Scholar

    [23]

    Gardiner T A, Stone J M 2008 J. Comput. Phys. 227 4123Google Scholar

    [24]

    Londrillo P, Zanna L D 2003 J. Comput. Phys. 195 17Google Scholar

    [25]

    Hass J F, Sturtevant B 1987 J. Fluid Mech. 181 41Google Scholar

  • 图 1  (a)计算模型; (b)界面组分沿对称轴的分布

    Fig. 1.  (a) Schematic of the computational model; (b) the distribution of R22 mole fraction along the symmetry axis of column.

    图 2  激波与气柱作用过程的计算阴影结果(上)与实验结果(下)[25]的对比 (a) t = 0.09 ms; (b) t = 0.215 ms; (c) t = 0.25 ms; (d) t = 1.20 ms

    Fig. 2.  Comparison of our numerical (up) and experimental[25] (down) shadowgraph images of the interactions between shock wave and gas column: (a) t = 0.09 ms; (b) t = 0.215 ms; (c) t = 0.25 ms; (d) t = 1.20 ms.

    图 3  施加磁场后流场的计算阴影图 (a) t = 0.12 ms; (b) t = 0.2 ms; (c) t = 0.25 ms; (d) t = 0.29 ms; (e) t = 0.425 ms; (f) t = 0.85 ms; (g) t = 1.20 ms; (h) t = 1.55 ms

    Fig. 3.  Numerical shadowgraph images of the case in the presence of a magnetic field: (a) t = 0.12 ms; (b) t = 0.2 ms; (c) t = 0.25 ms; (d) t = 0.29 ms; (e) t = 0.425 ms; (f) t = 0.85 ms; (g) t = 1.20 ms; (h) t = 1.55 ms.

    图 4  无磁场时流场涡量分布 (a) t = 0.3 ms; (b) t = 1.2 ms

    Fig. 4.  Vorticity distribution in the absence of a magnetic field: (a) t = 0.3 ms; (b) t = 1.2 ms.

    图 5  施加磁场后流场涡量分布 (a) t = 0.12 ms; (b) t = 0.2 ms; (c) t = 0.29 ms; (d) t = 0.425 ms; (e) t = 0.85 ms; (f) t = 1.2 ms

    Fig. 5.  Vorticity distribution in the presence of a magnetic field: (a) t = 0.12 ms; (b) t = 0.2 ms; (c) t = 0.29 ms; (d) t = 0.425 ms; (e) t = 0.85 ms; (f) t = 1.2 ms.

    图 6  t = 0.2 ms时, 流场中各物理量的分布 (a)横向磁场强度; (b)纵向磁场强度; (c)磁能量; (d)横向磁张力; (e)纵向磁张力; (f)涡量

    Fig. 6.  Spatial distribution of various physical quantities at t = 0.2 ms: (a) Transverse magnetic field; (b) longitudinal magnetic field; (c) magnetic energy; (d) transverse magnetic tension; (e) longitudinal magnetic tension; (f) vorticity.

    图 7  各物理量沿图6中虚线的分布 (a) 涡量; (b)磁场强度与磁能量; (c)磁场梯度与磁张力

    Fig. 7.  Distribution of various physical quantities along the red dotted line of Fig. 6: (a) Vorticity; (b) magnetic field and magnetic energy; (c) magnetic field gradient and magnetic tension.

    图 8  t = 0.2 ms时, 涡量层上磁张力矢量分布 (a)下半流场; (b)局部放大图

    Fig. 8.  Distribution of magnetic tension vector on the vorticity layer at t = 0.2 ms: (a) Lower half flow field; (b) local enlarged drawing.

    图 9  气柱发展过程中流场磁能量和磁感线分布 (a) t = 0.2 ms; (b) t = 0.425 ms; (c) t = 0.85 ms

    Fig. 9.  Distribution of the magnetic energy and the magnetic field lines during the evolution of gas column: (a) t = 0.2 ms; (b) t = 0.425 ms; (c) t = 0.85 ms.

    图 10  磁张力对界面不稳定性的作用 (a)横向磁张力; (b)纵向磁张力; (c)磁张力矢量.

    Fig. 10.  Effect of magnetic tension on interface instability: (a) Transverse magnetic tension; (b) longitudinal magnetic tension; (c) magnetic tension vector.

    图 11  流场最大磁强度 (a)与平均磁能密度(b)随时间的变化(红色虚线为基准线)

    Fig. 11.  Time evolution of the maximum (a) and average (b) magnetic field strength (the red dotted line is the reference line).

    图 12  流场环量随时间的变化曲线

    Fig. 12.  Time evolution of the circulation.

  • [1]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar

    [2]

    Meshkov E E 1969 Fluid Dyn. 4 101Google Scholar

    [3]

    Lindl J D, McCrory R L, Campbell E M 1992 Phys. Today 45 32Google Scholar

    [4]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Steven W, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [5]

    Lindl J D, Otto Landen O, Edwards J, Moses E 2014 Phys. Plasmas 21 020501Google Scholar

    [6]

    Yang J D, Kubota T, and Zukoski E E 1993 AIAA J. 31 854Google Scholar

    [7]

    Samtaney R 2003 Phys. Fluids 15 53Google Scholar

    [8]

    Hawley J F, Zabusky N J 1989 Phys. Rev. Lett. 63 1241Google Scholar

    [9]

    Wheatley V, Pullin D I, Samtaney R 2005 Phys. Rev. Lett. 95 125002Google Scholar

    [10]

    Wheatley V, Samtaney R, Pullin D I 2009 Phys. Fluids 21 082102Google Scholar

    [11]

    Wheatley V, Samtaney R, Pullin D I, Gehre R M 2014 Phys. Fluids 26 016102Google Scholar

    [12]

    Cao J, Wu Z, Ren H, Li D 2008 Phys. Plasmas 15 042102Google Scholar

    [13]

    Sano T, Nishihara K, Matsuoka C, Inoue T 2012 The Astrophys. J. 758 126Google Scholar

    [14]

    Mac Low M M, McKee C F, Klein R I 1994 The Astrophys. J. 433 757Google Scholar

    [15]

    Fragile P C, Anninos P, Gustafson K 2005 The Astrophys. J. 619 327Google Scholar

    [16]

    李源, 罗喜胜 2014 计算物理 31 659Google Scholar

    Li Y, Luo X S 2014 Chinese J. Comput. Phys. 31 659Google Scholar

    [17]

    董国丹, 张焕好, 林震亚, 秦建华, 陈志华, 郭则庆, 沙莎 2018 物理学报 67 204701Google Scholar

    Dong G D, Zhang H H, Lin Z Y, Qin J H, Chen Z H, Guo Z Q, Sha S 2018 Acta Phys. Sin. 67 204701Google Scholar

    [18]

    董国丹, 郭则庆, 秦建华, 张焕好, 姜孝海, 陈志华, 沙莎 2019 物理学报 68 165201Google Scholar

    Dong G D, Guo Z Q, Qin J H, Zhang H H, Jiang X H, Chen Z H, Sha S 2019 Acta Phys. Sin. 68 165201Google Scholar

    [19]

    沙莎, 陈志华, 薛大文 2013 物理学报 62 144701Google Scholar

    Sha S, Chen Z H, Xue D W 2013 Acta Phys. Sin. 62 144701Google Scholar

    [20]

    沙莎, 陈志华, 张庆兵 2015 物理学报 64 015201Google Scholar

    Sha S, Chen Z H, Zhang Q B 2015 Acta Phys. Sin. 64 015201Google Scholar

    [21]

    Lin Z Y, Zhang H H, Chen Z H, Liu Y, Hong Y J 2017 Int. J. Comput. Fluid D. 31 21Google Scholar

    [22]

    林震亚, 张焕好, 陈志华, 刘迎 2017 爆炸与冲击 37 748Google Scholar

    Lin Z Y, Zhang H H, Chen Z H, Liu Y 2017 Explosion and Shock Waves 37 748Google Scholar

    [23]

    Gardiner T A, Stone J M 2008 J. Comput. Phys. 227 4123Google Scholar

    [24]

    Londrillo P, Zanna L D 2003 J. Comput. Phys. 195 17Google Scholar

    [25]

    Hass J F, Sturtevant B 1987 J. Fluid Mech. 181 41Google Scholar

  • [1] 张升博, 张焕好, 张军, 毛勇建, 陈志华, 石启陈, 郑纯. 激波与轻质气柱作用过程的磁场抑制特性. 物理学报, 2024, 73(8): 084701. doi: 10.7498/aps.73.20231916
    [2] 张升博, 张焕好, 陈志华, 郑纯. 不同界面组分分布对Richtmyer-Meshkov不稳定性的影响. 物理学报, 2023, 72(10): 105202. doi: 10.7498/aps.72.20222090
    [3] 史慧敏, 莫润阳, 王成会. 磁流体管内“泡对”在磁声复合场中的振荡行为. 物理学报, 2022, 71(8): 084302. doi: 10.7498/aps.71.20212150
    [4] 党子涵, 郑纯, 张焕好, 陈志华. 汇聚激波诱导具有正弦扰动双层重气柱界面的演化机理. 物理学报, 2022, 71(21): 214703. doi: 10.7498/aps.71.20221012
    [5] 石启陈, 赵志杰, 张焕好, 陈志华, 郑纯. 流向磁场抑制Kelvin-Helmholtz不稳定性机理研究. 物理学报, 2021, 70(15): 154702. doi: 10.7498/aps.70.20202024
    [6] 袁永腾, 涂绍勇, 尹传盛, 李纪伟, 戴振生, 杨正华, 侯立飞, 詹夏宇, 晏骥, 董云松, 蒲昱东, 邹士阳, 杨家敏, 缪文勇. 冲击波波后辐射效应对Richtmyer-Meshkov不稳定性增长影响的实验研究. 物理学报, 2021, 70(20): 205203. doi: 10.7498/aps.70.20210653
    [7] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流. 物理学报, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [8] 董国丹, 郭则庆, 秦建华, 张焕好, 姜孝海, 陈志华, 沙莎. 不同磁场构型下Richtmyer-Meshkov不稳定性的数值研究及动态模态分解. 物理学报, 2019, 68(16): 165201. doi: 10.7498/aps.68.20190410
    [9] 李冬冬, 王革, 张斌. 激波作用不同椭圆氦气柱过程中流动混合研究. 物理学报, 2018, 67(18): 184702. doi: 10.7498/aps.67.20180879
    [10] 董国丹, 张焕好, 林震亚, 秦建华, 陈志华, 郭则庆, 沙莎. 磁控条件下激波冲击三角形气柱过程的数值研究. 物理学报, 2018, 67(20): 204701. doi: 10.7498/aps.67.20181127
    [11] 陈木凤, 李翔, 牛小东, 李游, Adnan, 山口博司. 两个非磁性颗粒在磁流体中的沉降现象研究. 物理学报, 2017, 66(16): 164703. doi: 10.7498/aps.66.164703
    [12] 李俊涛, 孙宇涛, 胡晓棉, 任玉新. 激波冲击V形界面重气体导致的壁面与旋涡作用及其对湍流混合的影响. 物理学报, 2017, 66(23): 235201. doi: 10.7498/aps.66.235201
    [13] 耿滔, 吴娜, 董祥美, 高秀敏. 基于磁流体光子晶体的可调谐近似零折射率研究. 物理学报, 2016, 65(1): 014213. doi: 10.7498/aps.65.014213
    [14] 沙莎, 陈志华, 张庆兵. 激波与SF6球形气泡相互作用的数值研究. 物理学报, 2015, 64(1): 015201. doi: 10.7498/aps.64.015201
    [15] 沙莎, 陈志华, 薛大文, 张辉. 激波与SF6梯形气柱相互作用的数值模拟. 物理学报, 2014, 63(8): 085205. doi: 10.7498/aps.63.085205
    [16] 苗银萍, 姚建铨. 基于磁流体填充微结构光纤的温度特性研究. 物理学报, 2013, 62(4): 044223. doi: 10.7498/aps.62.044223
    [17] 沙莎, 陈志华, 薛大文. 激波冲击R22重气柱所导致的射流与混合研究. 物理学报, 2013, 62(14): 144701. doi: 10.7498/aps.62.144701
    [18] 霍新贺, 王立锋, 陶烨晟, 李英骏. 非理想流体中Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究. 物理学报, 2013, 62(14): 144705. doi: 10.7498/aps.62.144705
    [19] 陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏. 任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究. 物理学报, 2012, 61(7): 075207. doi: 10.7498/aps.61.075207
    [20] 刘桂雄, 蒲尧萍, 徐 晨. 磁流体中Helmholtz和Kelvin力的界定. 物理学报, 2008, 57(4): 2500-2503. doi: 10.7498/aps.57.2500
计量
  • 文章访问数:  7332
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-12
  • 修回日期:  2020-04-26
  • 上网日期:  2020-06-07
  • 刊出日期:  2020-09-20

/

返回文章
返回