-
固态电解质锂电池具有能量密度大、循环稳定性强、机械强度高、不易燃、安全性高、使用寿命长等优点,广泛应用于航空航天、新能源汽车和移动设备等领域。但是在锂电池的电极/电解质界面处存在的锂枝晶生长问题一直是制约其性能提升和安全应用的关键因素,锂枝晶在电解质中生长不仅会降低电池的库伦效率,而且可能刺穿电解质导致电池内部正负极短路。本文针对固态锂电池中的锂枝晶生长问题,基于相场理论进行数值模拟研究,建立了耦合应力场、热场和电化学场的锂枝晶生长相场模型,研究了环境温度、外压力以及该两种条件耦合作用下的锂枝晶生长形态以及演化规律。研究结果表明,在较高温度和较大外应力作用下,锂枝晶生长缓慢,侧枝数量减少,表面更光滑,电沉积较为均匀。施加外压越大时,锂枝晶纵向生长受到抑制,呈压缩状态,比表面积和致密度更高,但机械不稳定性也会增加;环境温度越高,锂离子的扩散速率和反应速率越大,锂枝晶生长速率和大小也受到抑制,且二者耦合作用对枝晶生长有明显的抑制效果,应力集中在根部,使得枝晶更侧重于横向生长,有利于形成平坦和密集的锂沉积。Solid-state lithium batteries possess numerous advantages, including high energy density, excellent cycle stability, superior mechanical strength, non-flammability, enhanced safety, and extended service life. These characteristics make them highly suitable for applications in aerospace, new energy vehicles, and portable electronic devices. However, lithium dendrite growth at the electrode/electrolyte interface remains a critical challenge, limiting both performance and safety. The growth of lithium dendrites within the electrolyte not only reduces the battery’s Coulombic efficiency but also risks piercing the electrolyte, leading to internal short circuits between the anode and cathode. This study addresses the issue of lithium dendrite growth in solid-state lithium batteries by employing phase-field theory for numerical simulations. A phase-field model is developed, coupling the mechanical stress field, thermal field, and electrochemical field, to investigate the morphology and evolution of lithium dendrites under different ambient temperatures, external pressures, and their combined effects. The results indicate that higher temperatures and greater external pressures significantly suppress lithium dendrite growth, leading to fewer side branches, smoother surfaces, and more uniform electrochemical deposition. Increased external pressure inhibits longitudinal dendrite growth, resulting in a compressed morphology with higher specific surface area and compactness, though at the cost of increased mechanical instability. Similarly, elevated ambient temperatures enhance lithium-ion diffusion and reaction rates, which further suppress dendrite growth rates and sizes. The combined effects of temperature and pressure exhibit a pronounced inhibitory influence on dendrite growth, with stress concentrating at the dendrite roots. This stress distribution promotes lateral growth, facilitating the formation of flatter and denser lithium deposits.
-
Keywords:
- solid-state lithium batteries /
- phase-field model /
- lithium dendrites /
- mechaincal-thermo-electrochemical coupling
-
[1] Goodenough J B, Singh P 2015J. Electrochem. Soc. 162 A2387.
[2] Peters B K, Rodriguez K X, Reisberg S H, Beil S B, Hickey D P, Y Kawamata, Collins M, Starr J, Chen L, Udyavara S, Klunder K, Gorey T J, Anderson S L, Neurock M, Minteer S D, Baran P S 2019Science. 363 838.
[3] Geng X B, Li D G, Xu B. 2023Acta Phys. Sin. 72 220201(in Chinese)[耿晓彬, 李顶根, 徐波2023物理学报72 220201]
[4] Viswanathan V, Epstein A H, Chiang Y M, Esther T, Bradley M, Langford J, Winter M 2022Nature. 601 519.
[5] Lee M J, Han J, Lee K, Lee Y J, Kim B G, Jung K N, Kim B J, Lee S W 2022Nature. 601 217.
[6] Hao F, Verma A, Mukherjee P P 2018J. Mater. Chem. A 6 19664.
[7] Liu Z, Qi Y, Lin Y X, Chen L, Lu P, Chen L Q 2016J. Electrochem. Soc. 163 A592.
[8] Zhang G, Wang Q, Sha L T, Li Y J, Wang D, Shi S Q 2020Acta Phys. Sin. 69 226401(in Chinese) [张更, 王巧, 沙立婷,李亚捷, 王达, 施思齐2020物理学报69 226401]
[9] Sripad S, Viswanathan V 2017Electrochem. Soc. 164 E3635.
[10] Sripad S, Viswanathan V 2017ACS Energy Lett. 2 1669.
[11] Guttenberg M, Sripad S, Viswanathan V 2017ACS Energy Lett. 2 2642.
[12] GUYER J E, BOETTINGER W J, WARREN J A, McFadden G B 2004Phys. Rev. E 69 021603.
[13] Kobayashi R 1993 PHYSICA D. 63 410.
[14] Liang L Y, Qi Y, Xue F, Bhattacharya S, Harris, S J, Chen L Q 2012Phys. Rev. E. 86 051609.
[15] Chen L, Zhang H W, Liang L Y, Liu Z, Qi Y, Lu P, Chen J, Chen L Q 2015J. Power Sources. 300 376.
[16] Shen X, Zhang R, Shi P, Chen X, Zhang Q 2021Adv Energy Mater. 11 2003416.
[17] Yan H H, Bie Y H, Cui X Y, Xiong G P, Chen L 2018Energy Convers Manag. 161 193.
[18] Hong Z J, Viswanathan V 2019ACS Energy Lett. 4 1012-1019.
[19] Yurkiv V, Foroozan T, Ramasubramanian A, Shahbazian-Yassar R, Mashayek F 2018MRS Communications. 8 1285.
[20] Qi G Q, Liu X L, Dou R F, Wen Z, Zhou W N, Liu L 2024J. Energy Storage 101113899.
[21] Arguello M E, Labanda N A, Calo V M, Gumulya M, Utikar R, Derksen J 2022J. Energy Storage 53104892.
[22] Jiang W J, Wang Z H, Hu L Z, Wang Y, Ma Z S 2024 J. Energy Storage 86 111126.
[23] LIANG C, XING P F, WU M W, QIN X P 2024Energy Storage Science and Technology 11252095-4239(in Chinese)[梁辰, 邢鹏飞, 吴孟武, 秦训鹏2024储能科学与技术1125 2095-4239].
[24] Cahn J W, Allen S M 1977 Journal de Physique Colloques 38 C7-51.
[25] Allen S M, Cahn J W 1979Acta metall 271085.
[26] Liang Y H, Fan L Z 2020Acta Phys. Sin. 69 226201(in Chinese)[梁宇皓, 范丽珍2020物理学报69 226201]
[27] Wu W, Xiao X, Huang X S 2012Electrochimica Acta 83 227.
[28] Doyle M, Newman J, Góźdź A S, Schmutz C, Tarascon J M 1996J Electrochem Soc. 143 1890.
[29] Stewart S G, Newman J 2008J. Electrochem. Soc. 155F13.
[30] Zhang Y X, Li Y F, Shen W J, Li K, Lin Y X 2023ACS Appl. Energy Mater. 61933-1945.
[31] Yang H D, Wang Z J 2023J Solid State Electr 27 2607.
[32] Cui J, Shi C, Zhao J B 2021CIESC Journal. 72 3511(in Chinese)[崔锦,石川,赵金保2021化工学报72 3511]
[33] Yin X S, Tang W, Jung I D, Phua K C, Adams S., Lee S W, Zheng G W 2018Nano Energy 50 659-664.
[34] Wang Q Y, Wang S, Zhou G, Zhang J N, Zheng J Y, Yu X Q, Li H 2018Acta Phys. Sin. 67 128501(in Chinese)[王其钰, 王朔, 周格, 张杰男, 郑杰允, 禹习谦, 李泓2018物理学报67 128501]
[35] Qiao D G, LIU X L, WEN Z, DOU R F, ZHOU W N 2022ESST. 11 1008(in Chinese)[乔东格, 刘训良, 温治, 豆瑞峰, 周文宁2022储能科学与技术11 1008]
[36] Yan K, Wang J Y, Zhao S Q, Zhou D, Sun B, Cui Y, Wang G X 2019Angew Chem Int Edit. 58 11364
计量
- 文章访问数: 124
- PDF下载量: 15
- 被引次数: 0