搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于力-热-电化学耦合下固态锂电池枝晶生长的相场模拟研究

侯鹏洋 谢佳苗 李京阳 张鹏 李兆凯 郝文乾 田佳 王哲 李福正

引用本文:
Citation:

基于力-热-电化学耦合下固态锂电池枝晶生长的相场模拟研究

侯鹏洋, 谢佳苗, 李京阳, 张鹏, 李兆凯, 郝文乾, 田佳, 王哲, 李福正

Phase field simulation of dendrite growth in solid-state lithium batteries based on mechanical mechaincal-thermo-electrochemical coupling

Hou Peng-Yang, Xie Jia-Miao, Li Jing-Yang, Zhang Peng, Li Zhao-Kai, Hao Wen-Qian, Tian Jia, Wang Zhe, Li Fu-Zheng
PDF
导出引用
  • 固态电解质锂电池具有能量密度大、循环稳定性强、机械强度高、不易燃、安全性高、使用寿命长等优点,广泛应用于航空航天、新能源汽车和移动设备等领域。但是在锂电池的电极/电解质界面处存在的锂枝晶生长问题一直是制约其性能提升和安全应用的关键因素,锂枝晶在电解质中生长不仅会降低电池的库伦效率,而且可能刺穿电解质导致电池内部正负极短路。本文针对固态锂电池中的锂枝晶生长问题,基于相场理论进行数值模拟研究,建立了耦合应力场、热场和电化学场的锂枝晶生长相场模型,研究了环境温度、外压力以及该两种条件耦合作用下的锂枝晶生长形态以及演化规律。研究结果表明,在较高温度和较大外应力作用下,锂枝晶生长缓慢,侧枝数量减少,表面更光滑,电沉积较为均匀。施加外压越大时,锂枝晶纵向生长受到抑制,呈压缩状态,比表面积和致密度更高,但机械不稳定性也会增加;环境温度越高,锂离子的扩散速率和反应速率越大,锂枝晶生长速率和大小也受到抑制,且二者耦合作用对枝晶生长有明显的抑制效果,应力集中在根部,使得枝晶更侧重于横向生长,有利于形成平坦和密集的锂沉积。
    Solid-state lithium batteries possess numerous advantages, including high energy density, excellent cycle stability, superior mechanical strength, non-flammability, enhanced safety, and extended service life. These characteristics make them highly suitable for applications in aerospace, new energy vehicles, and portable electronic devices. However, lithium dendrite growth at the electrode/electrolyte interface remains a critical challenge, limiting both performance and safety. The growth of lithium dendrites within the electrolyte not only reduces the battery’s Coulombic efficiency but also risks piercing the electrolyte, leading to internal short circuits between the anode and cathode. This study addresses the issue of lithium dendrite growth in solid-state lithium batteries by employing phase-field theory for numerical simulations. A phase-field model is developed, coupling the mechanical stress field, thermal field, and electrochemical field, to investigate the morphology and evolution of lithium dendrites under different ambient temperatures, external pressures, and their combined effects. The results indicate that higher temperatures and greater external pressures significantly suppress lithium dendrite growth, leading to fewer side branches, smoother surfaces, and more uniform electrochemical deposition. Increased external pressure inhibits longitudinal dendrite growth, resulting in a compressed morphology with higher specific surface area and compactness, though at the cost of increased mechanical instability. Similarly, elevated ambient temperatures enhance lithium-ion diffusion and reaction rates, which further suppress dendrite growth rates and sizes. The combined effects of temperature and pressure exhibit a pronounced inhibitory influence on dendrite growth, with stress concentrating at the dendrite roots. This stress distribution promotes lateral growth, facilitating the formation of flatter and denser lithium deposits.
  • [1]

    Goodenough J B, Singh P 2015J. Electrochem. Soc. 162 A2387.

    [2]

    Peters B K, Rodriguez K X, Reisberg S H, Beil S B, Hickey D P, Y Kawamata, Collins M, Starr J, Chen L, Udyavara S, Klunder K, Gorey T J, Anderson S L, Neurock M, Minteer S D, Baran P S 2019Science. 363 838.

    [3]

    Geng X B, Li D G, Xu B. 2023Acta Phys. Sin. 72 220201(in Chinese)[耿晓彬, 李顶根, 徐波2023物理学报72 220201]

    [4]

    Viswanathan V, Epstein A H, Chiang Y M, Esther T, Bradley M, Langford J, Winter M 2022Nature. 601 519.

    [5]

    Lee M J, Han J, Lee K, Lee Y J, Kim B G, Jung K N, Kim B J, Lee S W 2022Nature. 601 217.

    [6]

    Hao F, Verma A, Mukherjee P P 2018J. Mater. Chem. A 6 19664.

    [7]

    Liu Z, Qi Y, Lin Y X, Chen L, Lu P, Chen L Q 2016J. Electrochem. Soc. 163 A592.

    [8]

    Zhang G, Wang Q, Sha L T, Li Y J, Wang D, Shi S Q 2020Acta Phys. Sin. 69 226401(in Chinese) [张更, 王巧, 沙立婷,李亚捷, 王达, 施思齐2020物理学报69 226401]

    [9]

    Sripad S, Viswanathan V 2017Electrochem. Soc. 164 E3635.

    [10]

    Sripad S, Viswanathan V 2017ACS Energy Lett. 2 1669.

    [11]

    Guttenberg M, Sripad S, Viswanathan V 2017ACS Energy Lett. 2 2642.

    [12]

    GUYER J E, BOETTINGER W J, WARREN J A, McFadden G B 2004Phys. Rev. E 69 021603.

    [13]

    Kobayashi R 1993 PHYSICA D. 63 410.

    [14]

    Liang L Y, Qi Y, Xue F, Bhattacharya S, Harris, S J, Chen L Q 2012Phys. Rev. E. 86 051609.

    [15]

    Chen L, Zhang H W, Liang L Y, Liu Z, Qi Y, Lu P, Chen J, Chen L Q 2015J. Power Sources. 300 376.

    [16]

    Shen X, Zhang R, Shi P, Chen X, Zhang Q 2021Adv Energy Mater. 11 2003416.

    [17]

    Yan H H, Bie Y H, Cui X Y, Xiong G P, Chen L 2018Energy Convers Manag. 161 193.

    [18]

    Hong Z J, Viswanathan V 2019ACS Energy Lett. 4 1012-1019.

    [19]

    Yurkiv V, Foroozan T, Ramasubramanian A, Shahbazian-Yassar R, Mashayek F 2018MRS Communications. 8 1285.

    [20]

    Qi G Q, Liu X L, Dou R F, Wen Z, Zhou W N, Liu L 2024J. Energy Storage 101113899.

    [21]

    Arguello M E, Labanda N A, Calo V M, Gumulya M, Utikar R, Derksen J 2022J. Energy Storage 53104892.

    [22]

    Jiang W J, Wang Z H, Hu L Z, Wang Y, Ma Z S 2024 J. Energy Storage 86 111126.

    [23]

    LIANG C, XING P F, WU M W, QIN X P 2024Energy Storage Science and Technology 11252095-4239(in Chinese)[梁辰, 邢鹏飞, 吴孟武, 秦训鹏2024储能科学与技术1125 2095-4239].

    [24]

    Cahn J W, Allen S M 1977 Journal de Physique Colloques 38 C7-51.

    [25]

    Allen S M, Cahn J W 1979Acta metall 271085.

    [26]

    Liang Y H, Fan L Z 2020Acta Phys. Sin. 69 226201(in Chinese)[梁宇皓, 范丽珍2020物理学报69 226201]

    [27]

    Wu W, Xiao X, Huang X S 2012Electrochimica Acta 83 227.

    [28]

    Doyle M, Newman J, Góźdź A S, Schmutz C, Tarascon J M 1996J Electrochem Soc. 143 1890.

    [29]

    Stewart S G, Newman J 2008J. Electrochem. Soc. 155F13.

    [30]

    Zhang Y X, Li Y F, Shen W J, Li K, Lin Y X 2023ACS Appl. Energy Mater. 61933-1945.

    [31]

    Yang H D, Wang Z J 2023J Solid State Electr 27 2607.

    [32]

    Cui J, Shi C, Zhao J B 2021CIESC Journal. 72 3511(in Chinese)[崔锦,石川,赵金保2021化工学报72 3511]

    [33]

    Yin X S, Tang W, Jung I D, Phua K C, Adams S., Lee S W, Zheng G W 2018Nano Energy 50 659-664.

    [34]

    Wang Q Y, Wang S, Zhou G, Zhang J N, Zheng J Y, Yu X Q, Li H 2018Acta Phys. Sin. 67 128501(in Chinese)[王其钰, 王朔, 周格, 张杰男, 郑杰允, 禹习谦, 李泓2018物理学报67 128501]

    [35]

    Qiao D G, LIU X L, WEN Z, DOU R F, ZHOU W N 2022ESST. 11 1008(in Chinese)[乔东格, 刘训良, 温治, 豆瑞峰, 周文宁2022储能科学与技术11 1008]

    [36]

    Yan K, Wang J Y, Zhao S Q, Zhou D, Sun B, Cui Y, Wang G X 2019Angew Chem Int Edit. 58 11364

  • [1] 张袆柔, 曾晓淇, 李家星, 任怡茂, 吴伟雄. 锂离子电池颗粒尺度下电化学-热-力过充模型. 物理学报, doi: 10.7498/aps.74.20240984
    [2] 刘东昆, 王庆宇, 张田, 周羽, 王翔. 大晶粒UO2燃料裂变气体释放行为相场模拟研究. 物理学报, doi: 10.7498/aps.73.20231773
    [3] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展. 物理学报, doi: 10.7498/aps.72.20230258
    [4] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究. 物理学报, doi: 10.7498/aps.72.20230824
    [5] 王浩, 曹珊珊, 苏俊豪, 徐海涛, 王震, 郑加金, 韦玮. 基于双包层光纤布拉格光栅传感器的锂电池组温度场监控. 物理学报, doi: 10.7498/aps.71.20212302
    [6] 李晓杰, 喻云泰, 张志文, 董小瑞. 基于电化学老化衰退模型的锂离子动力电池外特性. 物理学报, doi: 10.7498/aps.71.20211401
    [7] 陆敬予, 柯承志, 龚正良, 李德平, 慈立杰, 张力, 张桥保. 原位表征技术在全固态锂电池中的应用. 物理学报, doi: 10.7498/aps.70.20210531
    [8] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比. 物理学报, doi: 10.7498/aps.70.20201894
    [9] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, doi: 10.7498/aps.70.20210455
    [10] 赵宁, 穆爽, 郭向欣. 石榴石型固态锂电池中的物理问题. 物理学报, doi: 10.7498/aps.69.20201191
    [11] 梁宇皓, 范丽珍. 固态锂电池中的机械力学失效及解决策略. 物理学报, doi: 10.7498/aps.69.20200713
    [12] 张更, 王巧, 沙立婷, 李亚捷, 王达, 施思齐. 相场模型及其在电化学储能材料中的应用. 物理学报, doi: 10.7498/aps.69.20201411
    [13] 刘征宇, 杨昆, 魏自红, 姚利阳. 包含液相扩散方程简化的锂离子电池电化学模型. 物理学报, doi: 10.7498/aps.68.20190159
    [14] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制. 物理学报, doi: 10.7498/aps.68.20181726
    [15] 庞辉, 张旭. 一种基于简化电化学模型的锂电池互联状态观测器. 物理学报, doi: 10.7498/aps.67.20181429
    [16] 肖睿娟, 李泓, 陈立泉. 基于材料基因组方法的锂电池新材料开发. 物理学报, doi: 10.7498/aps.67.20180657
    [17] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法. 物理学报, doi: 10.7498/aps.66.238801
    [18] 陈振飞, 冯露, 赵洋, 齐红蕊. 力和扩散机理下外延形貌的演化分析. 物理学报, doi: 10.7498/aps.64.138103
    [19] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型. 物理学报, doi: 10.7498/aps.61.228102
    [20] 赵达文, 李金富. 相场模型模拟液固界面各向异性作用下自由枝晶生长. 物理学报, doi: 10.7498/aps.58.7094
计量
  • 文章访问数:  124
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-14

/

返回文章
返回