-
锂电池正、负极固相浓度分布以及荷电状态的精确估计对于开发锂电池工作状态的实时监控算法,进而构建高效、可靠的锂电池管理系统具有重要意义.本文基于多孔电极理论和浓度理论,提出基于扩展单粒子模型的锂电池关键内部参数识别的优化模型和方法;在该电化学模型简化的基础上,提出一种基于H∞鲁棒控制理论框架的锂电池新型双向互联观测器,可同时实现对锂电池正、负电极浓度及荷电状态的估计,并通过对比分析不同工况下的仿真结果和实验数据,对所提出的互联观测器性能进行了系统验证.结果表明:所设计的互联观测器能够准确预测锂电池的输出电压和荷电状态,有效提高了锂电池系统模型的动态性能和鲁棒稳定性,为锂电池管理系统的开发奠定了理论基础.The accurate estimation of the solid concentration distribution in anode and cathode, and state-of-charge (SOC) for a Li-ion battery cell is significantly important for developing the real-time monitoring algorithm of the Li-ion cell's working operation, and further establishing an efficient and reliable advanced battery management system (BMS). Firstly, according to the porous electrode theory and concentration theory, in this article we present a systematic optimized model and a method of identifying the key internal state parameters based on a Li-ion cell's enhanced single-particle-model (ESPM), in which, an appropriate parameter vector is identified in the typical hybrid-pulse-power-characterization (HPPC) operation scenario by using the parameter sensitivity analysis method, and then this parameter optimization problem is evaluated by genetic algorithm. It is verified that the maximum relative errors of the cell's output voltage for ESPM are 1.92%, 3.18% and 2.86% under HPPC, 1C-discharge and urban dynamometer driving schedule (UDDS) current profiles, respectively. Secondly, by introducing some assumptions and reduction techniques, the battery ESPM is further reduced and then a novel interconnected state observer is proposed through the combination of the reduced ESPM and H∞ robust control theory framework, which can realize the concurrent estimation of solid concentration and SOC in anode and cathode. Finally, the comparative validation and analysis study are conducted by using the experimental data acquired in HPPC and UDDS condition to demonstrate the effectiveness and feasibility of the proposed interconnected observer. The results show that the maximum relative errors of output voltage for the ESPM, the single-electrode concentration observer (Obsv-1) and the proposed interconnected observer (Obsv-2) of Li-ion cell are 2.0%, 3.8% and 2.6%, respectively, under HPPC operation at 23 ℃; under the same input current profile and operating condition, the maximum relative errors of SOC estimation are 2.4%, 4.7% and 3.4%, respectively. Moreover, the maximum relative errors of cell's output voltage for ESPM, Obsv-1 and Obsv-2 model are 1.9%, 3.2% and 2.1%, respectively, and the maximum relative errors of SOC estimation values for these three mathematical models are 2.1%, 4.4% and 3.2%, respectively. It is concluded that the proposed robust observer for a Li-ion cell can accurately predict the output voltage and SOC, and can also improve the dynamic performance and robust stability of Li-ion cell, which provides a solid theoretical foundation for developing the BMS.
-
Keywords:
- Li-ion cell /
- electrochemical model /
- parameter identification /
- interconnected state observer
[1] Huang L, Li J Y 2015 Acta Phys. Sin. 64 108202 (in Chinese) [黄亮, 李建元 2015 物理学报 64 108202]
[2] Cheng J, Li Z, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 物理学报 64 210202]
[3] Boovaragavan V, Harinipriya S, Subramanian V 2008 J. Power Sources 183 361
[4] Feng T, Yang L, Zhao X, Zhang H, Qiang J 2015 J. Power Sources 281 192
[5] Zhang X, Lu J, Yuan S, Yang J, Zhou X 2017 J. Power Sources 345 21
[6] Chaoui H, Mejdoubi A E, Gualous H 2017 IEEE Trans. Veh. Technol. 66 2000
[7] Di D, Stefanopoulou A, Fiengo G 2010 J. Dyn. Syst-T. ASME 132 061302
[8] Bartlett A, Marcicki J, Onori S, Rizzoni G, Yang X G, Miller T 2016 IEEE Trans. Contr. Syst. Technol. 24 384
[9] Tanim T R, Rahn C D, Wang C Y 2015 Energy 80 731
[10] Klein R, Chaturvedi N A, Christensen J, Ahmed J, Findeisen R, Kojic A 2013 IEEE Trans. Contr. Syst. Technol. 21 289
[11] Dey S, Ayalew B, Pisu P 2014 Int. Workshop Variable Struct. Syst. Nantes, France, June 29-July 2, 2014 p1
[12] Allam A, Onori S 2018 IEEE Trans. Ind. Electron. 65 7311
[13] Dey S, Ayalew B, Pisu P 2015 IEEE Trans. Contr. Syst. Technol. 23 1935
[14] Moura S J, Chaturvedi N A, Krstic M 2014 J. Dyn. Syst-T. ASME 136 011015
[15] Moura S J, Argomedo F B, Klein R, Mirtabatabaei A, Krstic M 2017 IEEE Trans. Contr. Syst. Technol. 25 453
[16] Forman J C, Moura S J, Stein J L, Fathy H K 2012 J. Power Sources 210 263
[17] Zhang L, Wang L, Hinds G, Chao L, Zheng J, Li J 2014 J. Power Sources 270 367
[18] Li J, Zou L, Tian F, Dong X, Zou Z, Yang H 2016 J. Electrochem. Soc. 163 A1646
[19] Wang Y, Fang H, Sahinoglu Z, Wada T, Hara S 2015 IEEE Trans. Contr. Syst. Technol. 23 948
[20] Pang H 2018 Acta Phys. Sin. 67 058201 (in Chinese) [庞辉 2018 物理学报 67 058201]
[21] Diwakar V D 2009 Ph. D. Dissertation (St. Louis: Washington University)
[22] Marcicki J, Canova M, Conlisk A T, Rizzoni G 2013 J. Power Sources 237 310
[23] Moura S J, Argomedo F B, Klein R, Mirtabatabaei A, Krstic M 2017 IEEE Trans. Contr. Syst. Technol. 25 453
[24] Fan G, Pan K, Canova M, Marcicki J, Yang X G 2016 J. Electrochem. Soc. 163 A666
[25] Smith K, Wang C Y 2006 J. Power Sources 161 628
[26] Speltino C, Domenico D D, Fiengo G, Stefanopoulou A 2009 European Control Conference (ECC) Budapest, Hungary, August 23-26, 2009 p1053
[27] Zhang L Q, Wang L X, Hinds G, Lyu C, Zheng J, Li J F 2014 J. Power Sources 270 367
[28] Valoen L O, Reimers J N 2005 J. Electrochem. Soc. 152 A882
[29] Ahmed R, El Sayed M, Arasaratnam I, Tjong J, Habibi S 2014 IEEE J. Em. Sel. Top. 2 659
[30] Marcicki J, Todeschini F, Onori S, Canova M 2012 American Control Conference (ACC 2012) Montreal, Canada, June 27-29, 2012 p572
[31] Forman J C, Moura S J, Stein J L, Fathy H K 2012 J. Power Sources 210 263
[32] Vanantwerp J G, Braatz R D 2000 J. Process Contr. 10 363
-
[1] Huang L, Li J Y 2015 Acta Phys. Sin. 64 108202 (in Chinese) [黄亮, 李建元 2015 物理学报 64 108202]
[2] Cheng J, Li Z, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 物理学报 64 210202]
[3] Boovaragavan V, Harinipriya S, Subramanian V 2008 J. Power Sources 183 361
[4] Feng T, Yang L, Zhao X, Zhang H, Qiang J 2015 J. Power Sources 281 192
[5] Zhang X, Lu J, Yuan S, Yang J, Zhou X 2017 J. Power Sources 345 21
[6] Chaoui H, Mejdoubi A E, Gualous H 2017 IEEE Trans. Veh. Technol. 66 2000
[7] Di D, Stefanopoulou A, Fiengo G 2010 J. Dyn. Syst-T. ASME 132 061302
[8] Bartlett A, Marcicki J, Onori S, Rizzoni G, Yang X G, Miller T 2016 IEEE Trans. Contr. Syst. Technol. 24 384
[9] Tanim T R, Rahn C D, Wang C Y 2015 Energy 80 731
[10] Klein R, Chaturvedi N A, Christensen J, Ahmed J, Findeisen R, Kojic A 2013 IEEE Trans. Contr. Syst. Technol. 21 289
[11] Dey S, Ayalew B, Pisu P 2014 Int. Workshop Variable Struct. Syst. Nantes, France, June 29-July 2, 2014 p1
[12] Allam A, Onori S 2018 IEEE Trans. Ind. Electron. 65 7311
[13] Dey S, Ayalew B, Pisu P 2015 IEEE Trans. Contr. Syst. Technol. 23 1935
[14] Moura S J, Chaturvedi N A, Krstic M 2014 J. Dyn. Syst-T. ASME 136 011015
[15] Moura S J, Argomedo F B, Klein R, Mirtabatabaei A, Krstic M 2017 IEEE Trans. Contr. Syst. Technol. 25 453
[16] Forman J C, Moura S J, Stein J L, Fathy H K 2012 J. Power Sources 210 263
[17] Zhang L, Wang L, Hinds G, Chao L, Zheng J, Li J 2014 J. Power Sources 270 367
[18] Li J, Zou L, Tian F, Dong X, Zou Z, Yang H 2016 J. Electrochem. Soc. 163 A1646
[19] Wang Y, Fang H, Sahinoglu Z, Wada T, Hara S 2015 IEEE Trans. Contr. Syst. Technol. 23 948
[20] Pang H 2018 Acta Phys. Sin. 67 058201 (in Chinese) [庞辉 2018 物理学报 67 058201]
[21] Diwakar V D 2009 Ph. D. Dissertation (St. Louis: Washington University)
[22] Marcicki J, Canova M, Conlisk A T, Rizzoni G 2013 J. Power Sources 237 310
[23] Moura S J, Argomedo F B, Klein R, Mirtabatabaei A, Krstic M 2017 IEEE Trans. Contr. Syst. Technol. 25 453
[24] Fan G, Pan K, Canova M, Marcicki J, Yang X G 2016 J. Electrochem. Soc. 163 A666
[25] Smith K, Wang C Y 2006 J. Power Sources 161 628
[26] Speltino C, Domenico D D, Fiengo G, Stefanopoulou A 2009 European Control Conference (ECC) Budapest, Hungary, August 23-26, 2009 p1053
[27] Zhang L Q, Wang L X, Hinds G, Lyu C, Zheng J, Li J F 2014 J. Power Sources 270 367
[28] Valoen L O, Reimers J N 2005 J. Electrochem. Soc. 152 A882
[29] Ahmed R, El Sayed M, Arasaratnam I, Tjong J, Habibi S 2014 IEEE J. Em. Sel. Top. 2 659
[30] Marcicki J, Todeschini F, Onori S, Canova M 2012 American Control Conference (ACC 2012) Montreal, Canada, June 27-29, 2012 p572
[31] Forman J C, Moura S J, Stein J L, Fathy H K 2012 J. Power Sources 210 263
[32] Vanantwerp J G, Braatz R D 2000 J. Process Contr. 10 363
计量
- 文章访问数: 7120
- PDF下载量: 126
- 被引次数: 0