-
锂离子电池过充时,负极超过最大嵌锂浓度会发生表面析锂,而正极则处于贫锂状态导致颗粒内部应力升高,从而引发严重的寿命和安全问题.本文基于单层电芯颗粒尺度,建立了NCM正极和石墨负极颗粒尺度下的三维电化学-力-热耦合过充模型,能够准确地反映充电过程中析锂和应力-应变规律.基于此,分析了充电倍率和负极颗粒半径设计参数对负极表面析锂的影响,结果表明:高倍率下析锂的触发电压较低,而低倍率下由于极化和温度较低的影响,过充至4.8V时析锂浓度较高;此外,相较于大粒径颗粒,小颗粒表面呈现最大锂离子浓度高、析锂过电位低、平均冯米塞斯应力大,更容易发生析锂.在应力方面,探究了正极颗粒空间分布和热效应的影响,定义了接触深度因子Jr,发现颗粒的接触深度与接触界面区域的应力成反比关系;而且,随着充电倍率增加,温度相关电化学参数显著变化,在计算颗粒层面应力时不能忽略.相关结果可为优化电池设计和充电管理策略提供理论依据和指导。During overcharging of lithium-ion batteries, lithium plating can occur on the anode surface when the maximum lithium intercalation concentration is exceeded, while the cathode is in a lithium-poor state. This situation can lead to significant issues related to battery lifespan and safety. In this paper, the geometric structure of the positive electrode particles is generated based on tomography data, while the negative electrode particles are represented by spheres of different sizes. Using the homogenization method, the carbon filler, binder and electrolyte are regarded as a single porous conductive adhesive domain. Based on the main mechanism of lithium-ion battery overcharge, a coupled three-dimensional electrochemical - mechanical - thermal overcharge model at the particle scale is developed for NCM cathode and graphite anode. The coupled mathematical model consists of four parts, namely the electrochemical model, the lithium plating model, the thermal model and the stress-strain model. In terms of lithium precipitation, the particle radius parameter and charging rates are investigated. The results show that the lithium plating concentration of the particles near the separator is higher, following the "principle of proximity" - the sequence of lithium deintercalation is related to the migration path. The surface of anode particles with small particle size is more prone to lithium precipitation due to the high maximum lithium ion concentration on the surface of the particles, the low surface lithium precipitation overpotential, and the high average Von Mises stress. At high charging rate, fast charge transfer and ion diffusion rates result in a low voltage at the anode triggering lithium precipitation. At a low rate, polarization and low temperature result in more lithium precipitation on the surface of the anode particles. In terms of stress, the spatial distribution between particles and thermal effects are investigated. The ratio of the distance from the contact surface to the center of the particle to the particle radius is calculated and defined as the contact depth (Jr), in order to better describe the law of particle contact stress. It is shown that the contact depth between particles is inversely proportional to the stress at the contact area. When the heat generation effect is considered, the temperature of the battery rises faster with the increase of the charging rate. The electrochemical parameters related to temperature and the lithium concentration diffusion gradient increase significantly, and the influence of temperature on the particle stress is also more significant. The relevant results can provide theoretical basis and guidance for designing battery and optimizing charge strategies.
-
[1] Yong J Y, Ramachandaramurthy V K, Tan K M, Mithulananthan N 2015Renewable and Sustainable energy reviews 49 365
[2] Crabtree G 2019Science 366 422
[3] Huang W, Feng X, Han X, Zhang W, Jiang F 2021Cell Reports Physical Science 2 100285
[4] Wang Q, Mao B, Stoliarov S I, Sun J 2019Progress in Energy and Combustion Science 73 95
[5] Belova I V, Murch G E 1995Journal of Applied Physics 77 127
[6] Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y, Xu B X 2019Journal of Power Sources 413 259
[7] Pastor-Fernández C, Uddin K, Chouchelamane G H, Widanage W D, Marco J 2017Journal of Power Sources 360 301
[8] Wang Q Y, Wang S, Zhou G, Zhang J N, Zhen J Y, Yu X Q, Li H 2018 Acta Phys.Sin. 67 279(in Chinese) [王其钰, 王朔, 周格, 张杰男, 郑杰允, 禹习谦, 李泓2018物理学报67 279]
[9] Honbo H, Takei K, Ishii Y, Nishida T 2009Journal of Power Sources 189 337
[10] Mei W, Duan Q, Qin P, Xu J, Wang Q, Sun J 2019Journal of The Electrochemical Society 166 A3319
[11] Arora P, Doyle M, White R E 1999Journal of The Electrochemical Society 146 3543
[12] Ren D, Smith K, Guo D, Han X, Feng X, Lu L, Ouyang M, Li J 2018Journal of The Electrochemical Society 165 A2167
[13] Mei W, Zhang L, Sun J, Wang Q 2020Energy storage materials 32 91
[14] Yang S, Hua Y, Qiao D, Lian Y, Pan Y, He Y 2019Electrochimica Acta 326 134928
[15] Wang Y, Li H Wang Z, Lian C, Xie Z 2021Journal of Energy Storage 43 103214
[16] Schmidt A, Ramani E, Carraro T, Joos J, Weber A, Kamlah M, Ivers-Tiffée E 2021Energy Technology 6 2000881
[17] Ebner M, Geldmacher F, Marone F, Stampanoni M, Wood V 2013ADVANCED ENERGY MATERIALS 3 845
[18] Li T, Cheng X M, Hu C H, 2021Acta Phys. Sin. 70 423(in Chinese) [李涛,程夕明,胡晨华2021物理学报70 423]
[19] Yang F Q 2016Science China(Physics, Mechanics & Astronomy.) 59 44
[20] Newman J S, Tobias C W 1962 Journal of The Electrochemical Society 109 1183
[21] Ge H, Aoki T, Ikeda N, Suga S, Isobe T, Li Z, Tabuchi Y, Zhang J 2017Journal of The Electrochemical Society 164 A1050
[22] David W I F, Thackeray M M, De Picciotto L A, Goodenough J B 1987 Journal of Solid State Chemistry 67 316
[23] Yang F 2005Materials Science and Engineering: A 409 153
[24] Wu B, Lu W 2017Journal of Power Sources 360 360
[25] Guo M, Sikha G 2010Journal of The Electrochemical Society 158 A122
[26] Jang Y H, Ai L, Jia M, Cheng J, Du S L, Li S G 2017Acta Phys. Sin. 66 118202(in Chinese) [蒋跃辉, 艾亮, 贾明, 程昀, 杜双龙, 李书国2017物理学报66 118202]
[27] Wu W, Xiao X, Huang X, Yan S 2014Computational Materials Science 83 127
[28] Samba A, Omar N, Gualous H, Capron O, Van B P, Van M J 2014Electrochimica Acta 147 319
[29] Lai Y, Du S, Ai L, Cheng Y, Tang Y, Jia M 2015International Journal of Hydrogen Energy 40 13039
[30] Mei W, Chen H, Sun J, Wang Q 2018Applied Thermal Engineering 142 148
[31] Hahn M, Buqa H, Ruch P W, Goers D, Spahr M E, Ufheil J, Novák P, Kötz R 2008Electrochemical and Solid-State Letters 11 A151
[32] Kondrakov A O, Schmidt A, Xu J, Geßwein H, Mönig R, Hartmann P, Sommer H, Brezesinski T, Janek J 2017The Journal of Physical Chemistry C 121 3286
[33] Hosseinzadeh E, Genieser R, Worwood D, Barai A, Marco J, Jennings P 2018Journal of power sources 382 77
[34] Yang Y, Zhong X L, Xu L 2024 Journal of Energy Chemistry 97 453
[35] Wei Z W, Mao L Y, Wang Y, Lu L G, Ouyang M G 2024Journal of University of Shanghai For Science and Technology 46 1(in chinese) [魏振伟, 毛烁源, 汪宇, 韩雪冰, 卢兰光, 欧阳明高2024上海理工大学学报46 1]
[36] Mao S, Wang Y, Lu Y 2024InfoMat e12612
[37] Wu W, Ma R, Liu J, Liu M, Wang We, Wang Q 2021 International Journal of Heat and Mass Transfer 170 121024.
[38] Luo C X, Shi C G, Yu Z Y, Huang L, Sun S G 2022Journal of Electrochemistry 28 7
[39] Manthiram A 2020Nature communications 11 1550
计量
- 文章访问数: 9
- PDF下载量: 0
- 被引次数: 0