搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池颗粒尺度下电化学-热-力过充模型

张袆柔 曾晓淇 李家星 任怡茂 吴伟雄

引用本文:
Citation:

锂离子电池颗粒尺度下电化学-热-力过充模型

张袆柔, 曾晓淇, 李家星, 任怡茂, 吴伟雄

Electrochemical-Thermal-Mechanical Overcharge Model at the Particle Scale for Lithium-Ion Batteries

Zhang Hui-Rou, Zeng Xiao-Qi, Li Jia-Xing, Ren Yi-Mao, Wu Wei-Xiong
PDF
导出引用
  • 锂离子电池过充时,负极超过最大嵌锂浓度会发生表面析锂,而正极则处于贫锂状态导致颗粒内部应力升高,从而引发严重的寿命和安全问题.本文基于单层电芯颗粒尺度,建立了NCM正极和石墨负极颗粒尺度下的三维电化学-力-热耦合过充模型,能够准确地反映充电过程中析锂和应力-应变规律.基于此,分析了充电倍率和负极颗粒半径设计参数对负极表面析锂的影响,结果表明:高倍率下析锂的触发电压较低,而低倍率下由于极化和温度较低的影响,过充至4.8V时析锂浓度较高;此外,相较于大粒径颗粒,小颗粒表面呈现最大锂离子浓度高、析锂过电位低、平均冯米塞斯应力大,更容易发生析锂.在应力方面,探究了正极颗粒空间分布和热效应的影响,定义了接触深度因子Jr,发现颗粒的接触深度与接触界面区域的应力成反比关系;而且,随着充电倍率增加,温度相关电化学参数显著变化,在计算颗粒层面应力时不能忽略.相关结果可为优化电池设计和充电管理策略提供理论依据和指导。
    During overcharging of lithium-ion batteries, lithium plating can occur on the anode surface when the maximum lithium intercalation concentration is exceeded, while the cathode is in a lithium-poor state. This situation can lead to significant issues related to battery lifespan and safety. In this paper, the geometric structure of the positive electrode particles is generated based on tomography data, while the negative electrode particles are represented by spheres of different sizes. Using the homogenization method, the carbon filler, binder and electrolyte are regarded as a single porous conductive adhesive domain. Based on the main mechanism of lithium-ion battery overcharge, a coupled three-dimensional electrochemical - mechanical - thermal overcharge model at the particle scale is developed for NCM cathode and graphite anode. The coupled mathematical model consists of four parts, namely the electrochemical model, the lithium plating model, the thermal model and the stress-strain model. In terms of lithium precipitation, the particle radius parameter and charging rates are investigated. The results show that the lithium plating concentration of the particles near the separator is higher, following the "principle of proximity" - the sequence of lithium deintercalation is related to the migration path. The surface of anode particles with small particle size is more prone to lithium precipitation due to the high maximum lithium ion concentration on the surface of the particles, the low surface lithium precipitation overpotential, and the high average Von Mises stress. At high charging rate, fast charge transfer and ion diffusion rates result in a low voltage at the anode triggering lithium precipitation. At a low rate, polarization and low temperature result in more lithium precipitation on the surface of the anode particles. In terms of stress, the spatial distribution between particles and thermal effects are investigated. The ratio of the distance from the contact surface to the center of the particle to the particle radius is calculated and defined as the contact depth (Jr), in order to better describe the law of particle contact stress. It is shown that the contact depth between particles is inversely proportional to the stress at the contact area. When the heat generation effect is considered, the temperature of the battery rises faster with the increase of the charging rate. The electrochemical parameters related to temperature and the lithium concentration diffusion gradient increase significantly, and the influence of temperature on the particle stress is also more significant. The relevant results can provide theoretical basis and guidance for designing battery and optimizing charge strategies.
  • [1]

    Yong J Y, Ramachandaramurthy V K, Tan K M, Mithulananthan N 2015Renewable and Sustainable energy reviews 49 365

    [2]

    Crabtree G 2019Science 366 422

    [3]

    Huang W, Feng X, Han X, Zhang W, Jiang F 2021Cell Reports Physical Science 2 100285

    [4]

    Wang Q, Mao B, Stoliarov S I, Sun J 2019Progress in Energy and Combustion Science 73 95

    [5]

    Belova I V, Murch G E 1995Journal of Applied Physics 77 127

    [6]

    Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y, Xu B X 2019Journal of Power Sources 413 259

    [7]

    Pastor-Fernández C, Uddin K, Chouchelamane G H, Widanage W D, Marco J 2017Journal of Power Sources 360 301

    [8]

    Wang Q Y, Wang S, Zhou G, Zhang J N, Zhen J Y, Yu X Q, Li H 2018 Acta Phys.Sin. 67 279(in Chinese) [王其钰, 王朔, 周格, 张杰男, 郑杰允, 禹习谦, 李泓2018物理学报67 279]

    [9]

    Honbo H, Takei K, Ishii Y, Nishida T 2009Journal of Power Sources 189 337

    [10]

    Mei W, Duan Q, Qin P, Xu J, Wang Q, Sun J 2019Journal of The Electrochemical Society 166 A3319

    [11]

    Arora P, Doyle M, White R E 1999Journal of The Electrochemical Society 146 3543

    [12]

    Ren D, Smith K, Guo D, Han X, Feng X, Lu L, Ouyang M, Li J 2018Journal of The Electrochemical Society 165 A2167

    [13]

    Mei W, Zhang L, Sun J, Wang Q 2020Energy storage materials 32 91

    [14]

    Yang S, Hua Y, Qiao D, Lian Y, Pan Y, He Y 2019Electrochimica Acta 326 134928

    [15]

    Wang Y, Li H Wang Z, Lian C, Xie Z 2021Journal of Energy Storage 43 103214

    [16]

    Schmidt A, Ramani E, Carraro T, Joos J, Weber A, Kamlah M, Ivers-Tiffée E 2021Energy Technology 6 2000881

    [17]

    Ebner M, Geldmacher F, Marone F, Stampanoni M, Wood V 2013ADVANCED ENERGY MATERIALS 3 845

    [18]

    Li T, Cheng X M, Hu C H, 2021Acta Phys. Sin. 70 423(in Chinese) [李涛,程夕明,胡晨华2021物理学报70 423]

    [19]

    Yang F Q 2016Science China(Physics, Mechanics & Astronomy.) 59 44

    [20]

    Newman J S, Tobias C W 1962 Journal of The Electrochemical Society 109 1183

    [21]

    Ge H, Aoki T, Ikeda N, Suga S, Isobe T, Li Z, Tabuchi Y, Zhang J 2017Journal of The Electrochemical Society 164 A1050

    [22]

    David W I F, Thackeray M M, De Picciotto L A, Goodenough J B 1987 Journal of Solid State Chemistry 67 316

    [23]

    Yang F 2005Materials Science and Engineering: A 409 153

    [24]

    Wu B, Lu W 2017Journal of Power Sources 360 360

    [25]

    Guo M, Sikha G 2010Journal of The Electrochemical Society 158 A122

    [26]

    Jang Y H, Ai L, Jia M, Cheng J, Du S L, Li S G 2017Acta Phys. Sin. 66 118202(in Chinese) [蒋跃辉, 艾亮, 贾明, 程昀, 杜双龙, 李书国2017物理学报66 118202]

    [27]

    Wu W, Xiao X, Huang X, Yan S 2014Computational Materials Science 83 127

    [28]

    Samba A, Omar N, Gualous H, Capron O, Van B P, Van M J 2014Electrochimica Acta 147 319

    [29]

    Lai Y, Du S, Ai L, Cheng Y, Tang Y, Jia M 2015International Journal of Hydrogen Energy 40 13039

    [30]

    Mei W, Chen H, Sun J, Wang Q 2018Applied Thermal Engineering 142 148

    [31]

    Hahn M, Buqa H, Ruch P W, Goers D, Spahr M E, Ufheil J, Novák P, Kötz R 2008Electrochemical and Solid-State Letters 11 A151

    [32]

    Kondrakov A O, Schmidt A, Xu J, Geßwein H, Mönig R, Hartmann P, Sommer H, Brezesinski T, Janek J 2017The Journal of Physical Chemistry C 121 3286

    [33]

    Hosseinzadeh E, Genieser R, Worwood D, Barai A, Marco J, Jennings P 2018Journal of power sources 382 77

    [34]

    Yang Y, Zhong X L, Xu L 2024 Journal of Energy Chemistry 97 453

    [35]

    Wei Z W, Mao L Y, Wang Y, Lu L G, Ouyang M G 2024Journal of University of Shanghai For Science and Technology 46 1(in chinese) [魏振伟, 毛烁源, 汪宇, 韩雪冰, 卢兰光, 欧阳明高2024上海理工大学学报46 1]

    [36]

    Mao S, Wang Y, Lu Y 2024InfoMat e12612

    [37]

    Wu W, Ma R, Liu J, Liu M, Wang We, Wang Q 2021 International Journal of Heat and Mass Transfer 170 121024.

    [38]

    Luo C X, Shi C G, Yu Z Y, Huang L, Sun S G 2022Journal of Electrochemistry 28 7

    [39]

    Manthiram A 2020Nature communications 11 1550

  • [1] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展. 物理学报, doi: 10.7498/aps.72.20230258
    [2] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究. 物理学报, doi: 10.7498/aps.72.20230824
    [3] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, doi: 10.7498/aps.70.20202130
    [4] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, doi: 10.7498/aps.70.20210455
    [5] 邢丽丹, 谢启明, 李伟善. 电解液及其界面电化学性质的机理研究进展. 物理学报, doi: 10.7498/aps.69.20201553
    [6] 徐晗, 张璐, 党政. 固体氧化物燃料电池模式阳极内传输与电化学反应耦合机理. 物理学报, doi: 10.7498/aps.69.20191697
    [7] 刘征宇, 杨昆, 魏自红, 姚利阳. 包含液相扩散方程简化的锂离子电池电化学模型. 物理学报, doi: 10.7498/aps.68.20190159
    [8] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制. 物理学报, doi: 10.7498/aps.68.20181726
    [9] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190503
    [10] 孙凤楠, 冯露, 卜家贺, 张静, 李林安, 王世斌. 应力对锂离子电池中空碳包覆硅负极电化学性能的影响. 物理学报, doi: 10.7498/aps.68.20182279
    [11] 徐紫巍, 石常帅, 赵光辉, 王明渊, 刘桂武, 乔冠军. 电化学析氢反应中单层MoSe2氢吸附机理第一性原理研究. 物理学报, doi: 10.7498/aps.67.20180882
    [12] 李娟, 汝强, 胡社军, 郭凌云. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究. 物理学报, doi: 10.7498/aps.63.168201
    [13] 汤依伟, 贾明, 程昀, 张凯, 张红亮, 李劼. 基于电化学与热能的耦合关系演算聚合物锂离子动力电池的温度状态及分布. 物理学报, doi: 10.7498/aps.62.158201
    [14] 张朝阳, 李中洋, 秦昌亮, 印洁, 张长桃, 毛卫平, 冯钦玉. 脉冲激光与电化学复合的应力刻蚀加工质量研究. 物理学报, doi: 10.7498/aps.62.094210
    [15] 杨斌鑫, 欧阳洁. 黏弹性熔体充模流动诱导残余应力模拟. 物理学报, doi: 10.7498/aps.61.234602
    [16] 刘光友, 谭兴文, 姚金才, 王 振, 熊祖洪. 电化学制备薄黑硅抗反射膜. 物理学报, doi: 10.7498/aps.57.514
    [17] 王 杰, 徐友龙, 陈 曦, 杜显锋, 李喜飞. 电化学法制备高密度导电聚吡咯的性能研究. 物理学报, doi: 10.7498/aps.56.4256
    [18] 谷建峰, 付伟佳, 刘 明, 刘志文, 马春雨, 张庆瑜. 电化学沉积高c轴取向ZnO薄膜及其光学性能分析. 物理学报, doi: 10.7498/aps.56.5979
    [19] 胡海宁, 陈京兰, 吴光恒, 陈丽婕, 刘何燕, 李养贤, 曲静萍. 电化学沉积Fe与FePd纳米线阵列的磁性. 物理学报, doi: 10.7498/aps.54.4370
    [20] 胡海宁, 陈京兰, 吴光恒. 电化学沉积Fe单晶纳米线生长中的取向控制. 物理学报, doi: 10.7498/aps.54.389
计量
  • 文章访问数:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-19

/

返回文章
返回