搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池颗粒尺度下电化学-热-力过充模型

张袆柔 曾晓淇 李家星 任怡茂 吴伟雄

引用本文:
Citation:

锂离子电池颗粒尺度下电化学-热-力过充模型

张袆柔, 曾晓淇, 李家星, 任怡茂, 吴伟雄

Electrochemical-thermal-mechanical overcharge model on a scale of particle for lithium-ion batteries

ZHANG Huirou, ZENG Xiaoqi, LI Jiaxing, REN Yimao, WU Weixiong
PDF
HTML
导出引用
  • 锂离子电池过充时, 负极超过最大嵌锂浓度会发生表面析锂, 而正极则处于贫锂状态导致颗粒内部应力升高, 从而引发严重的寿命和安全问题. 本文基于单层电芯颗粒尺度, 建立了镍钴锰正极和石墨负极颗粒尺度下的三维电化学-力-热耦合过充模型, 能够准确地反映充电过程中析锂和应力-应变规律. 基于此, 分析了充电倍率和负极颗粒半径设计参数对负极表面析锂的影响. 结果表明: 高倍率下析锂的触发电压较低, 而低倍率下由于极化和温度较低的影响, 过充至4.8 V时析锂浓度较高; 相较于大粒径颗粒, 小颗粒表面呈现最大锂离子浓度高、析锂过电位低、平均冯·米塞斯应力大, 更容易发生析锂. 在应力方面, 探究了正极颗粒空间分布和热效应的影响, 定义了接触深度因子${J_{\text{r}}}$, 发现颗粒的接触深度与接触界面区域的应力成反比关系; 而且, 随着充电倍率增大, 温度相关电化学参数显著变化, 在计算颗粒层面应力时不能忽略. 相关结果可为优化电池设计和充电管理策略提供理论依据和指导.
    During overcharging of lithium-ion batteries, lithium plating can occur on the anode surface when the maximum lithium intercalation concentration is exceeded, while the cathode is in a lithium-poor state, which can result in shortened battery lifespan and safety. In this work, the geometric structure of the positive electrode particles is designed based on the tomography data, while the negative electrode particles are represented by spheres with different sizes. The homogenization method is used, with the carbon filler, binder and electrolyte regarded as a single porous conductive adhesive domain. Based on the main mechanism of lithium-ion battery overcharge, a coupled three-dimensional electrochemical-mechanical-thermal overcharge model on a particle scale is developed for NCM cathode and graphite anode. The coupled mathematical model consists of four parts, namely the electrochemical model, the lithium plating model, the thermal model and the stress-strain model. In terms of lithium precipitation, the particle radius parameter and charging rates are investigated. The results show that the lithium plating concentration of the particles near the separator is higher, following the “principle of proximity” , namely the sequence of lithium deintercalation is related to the migration path. The surface of anode particles with small particle size is more prone to lithium precipitation due to the high maximum lithium ion concentration on the surface of the particles, the low surface lithium precipitation overpotential, and the high average Von Mises stress. At high charging rate, fast charge transfer rate and ion diffusion rate result in a low voltage at the anode, triggering off lithium precipitation. At a low rate, polarization and low temperature can lead to the precipitation of more lithium on the surface of the anode particles. In terms of stress, the spatial distribution between particles and thermal effects are investigated. The ratio of the distance from the contact surface to the center of the particle to the particle radius is calculated and defined as the contact depth ($Jr$), in order to better describe the law of particle contact stress. It is shown that the contact depth between particles is inversely proportional to the stress on the contact area. When the heat generation effect is considered, the temperature of the battery rises faster with the increase of the charging rate. The electrochemical parameters related to temperature and the lithium concentration diffusion gradient increase significantly, and the influence of temperature on the particle stress is also more significant. The relevant results can provide theoretical basis and guidance for designing battery and optimizing charge strategies.
  • 图 1  模型几何图和耦合关系图 (a) 几何模型; (b) 网格; (c) 数学模型之间的耦合关系

    Fig. 1.  Geometric shape and coupling relationship diagram of the model: (a) Geometric shape; (b) mesh; (c) coupling relationship between mathematical models.

    图 2  NCM和石墨随化学计量系数x变化的熵系数(a)[12]和平衡电位曲线 (b) [13]

    Fig. 2.  Entropy coefficient (a) [12] and the equilibrium potential (b) [13] as a function of the chemical composition coefficient x of NCM and graphite.

    图 3  NCM111和石墨随化学计量系数x变化的体积变化率[31,32]

    Fig. 3.  Volume change rate of NCM111 and graphite as a function of stoichiometry coefficient x[31,32].

    图 4  电压的仿真数据与实验数据的对比 (a) 充电至4.2 V时, 充电倍率为0.2C, 0.5C, 1C和1.5C的电压变化图; (b) 充电至4.8 V时, 充电倍率为0.2C, 0.5C的电压变化图

    Fig. 4.  Comparison between simulated and experimental data of voltage: (a) Voltage variation graphs charging to 4.2 V at charging rates of 0.2C, 0.5C, 1C and 1.5C; (b) voltage variation graphs charging to 4.8 V at charging rates of 0.2C and 0.5C.

    图 5  (a) 负极颗粒表面析出锂金属浓度分布; (b) 负极颗粒表面析锂过电位绝对值分布; (c) 不同粒径颗粒位置示意(蓝色标记)

    Fig. 5.  (a) Lithium metal concentration on the particle surface; (b) the absolute value of overpotential of lithium plating on the particle surface; (c) position of particles with different sizes (the blue area).

    图 6  在负极两个颗粒表面的过充过程 (a) 析出锂金属浓度; (b) 最大锂离子浓度; (c) 平均析锂过电位; (d) 平均冯·米塞斯应力

    Fig. 6.  Overcharging process on the surfaces of two negative particles: (a) Concentration of lithium metal precipitated; (b) maximum lithium ion concentration; (c) average lithium precipitation overpotential; (d) average von Mises stress.

    图 7  不同倍率下的负极整个表面析出的锂金属浓度(a)和负极颗粒的温度(b)

    Fig. 7.  (a) Lithium metal concentration precipitated on the whole surface of the negative electrode and (b) the temperature of the negative electrode particles at different charging rates.

    图 8  (a) 0.5C充电至4.8 V的正极应力-应变; (b) 0.5C充电至4.8 V的正极与负极应力

    Fig. 8.  (a) Stress-strain of the cathode charged to 4.8 V at 0.5C; (b) stress of the cathode and anode charged to 4.8 V at 0.5C.

    图 9  0.5C充电至3.9 V, 4.2 V, 4.5 V, 4.8 V的正极颗粒应力-应变分布图

    Fig. 9.  Stress-strain distribution diagrams of cathode particles charged to 3.9 V, 4.2 V, 4.5 V and 4.8 V at 0.5C.

    图 10  A, B, C和D四组颗粒的接触应力-应变(a)和位置(b)

    Fig. 10.  (a) Contact stress and strain of particles and (b) corresponding position in groups A, B, C and D.

    图 11  0.2C (a), (c) 和0.5C (b), (d)倍率下, 正极颗粒平均冯·米塞斯应力, 以及温度相关系数随充电过程变化

    Fig. 11.  Average von Mises stress of positive electrode particles and temperature-dependent coefficient at 0.2C (a), (c) 和0.5C (b), (d).

    表 1  电化学过充模型中的几何参数和结构

    Table 1.  Geometric parameters and structure of the electrochemical overcharge model.

    参数负极隔膜正极
    长度L/μm803095
    颗粒平均半径Rs_avg/μm4.156.19
    颗粒最大/最小半径Rsmax/min/μm14.61/1.0314.25/1.62
    颗粒面积Ap/μm22499720553
    颗粒体积Vp/μm33789236193
    电池截面长度Lcross/μm37
    电池截面宽度Across/μm234.4
    比表面积av/m–12.52×1051.69×105
    固相体积分数ψs0.38330.2984
    液相体积分数ψe0.61670.7015
    下载: 导出CSV

    表 4  电化学过充模型中的热力学参数[27-30]

    Table 4.  Thermal mechanical parameters of the electrochemical overcharge model[27-30].

    参数 负极 隔膜 正极
    密度ρ/kg·m3 2300 1000 4530
    杨氏模量E/ GPa 1047 78
    泊松比nu 0.3 0.25
    热膨胀系数αT/K–1 4.06×10–6 1.2×10–5
    电池比热容Cp/(J·kg–1·K–1) 881 1260 1009.21
    对流系数h/(W·m–2·K–1) 10
    下载: 导出CSV

    表 2  电化学过充模型中的电化学参数[12,13,16]

    Table 2.  Electrochemical parameters of the electrochemical overcharge model[12,13,16].

    参数负极隔膜正极
    固相电子电导率σs/(S·m–1)1003.8
    固相有效电子电导率σs, eff/(S·m–1)ψs1.5σsψs1.5σs
    液相离子电导率σe/(S·m–1)ce(5.38-3.49×10–4ce+2.3×10–7ce2)2×10–4
    液相有效离子电导率σe, eff/(S·m–1)ψe1.5σe
    液相电子电导率σca/(S·m–1)10
    σe的活性能Ea, σe/(kJ·mol–1)30
    初始电解质浓度ce, 0/(mol·m–3)1200
    最大固相锂浓度cs, max/(mol·m–3)2440730017
    化学计量系数x在1/0 SOC0.115/0.980.92/0.222
    容量比N/P1.09
    固相扩散系数Ds/(m2·S–1)1.45×10–132×10–13
    液相扩散系数De/(m2·S–1)$ {10^{[ - 8.43 - 54/(59.15 - 0.05{c_{\text{e}}}}}^{) - 2.2 \times {{10}^{ - 4 c_{\text{e}}^2}}]} $
    液相有效扩散系数De, eff/(m2·S–1)ψe1.5De
    De的活化能Ea, De/(kJ·mol–1)72
    下载: 导出CSV

    表 3  电化学过充模型中的动力学参数[13]

    Table 3.  Dynamics parameters of the electrochemical overcharge model[13].

    参数负极隔膜正极
    反应的传递系数αa, 1, αc, 10.5, 0.50.5, 0.5
    反应速率常数k1, ref/(m·s–1)2×10–112×10–11
    k1的活化能Ea, k1/(kJ·mol–1)7145
    析锂反应传递系数αa, 2, αc, 20.3, 0.7
    析锂反应速率常数k2, ref/(m·s–1)2.5×10–7
    k2的活化能Ea, k2/(kJ·mol–1)50
    锂的摩尔质量Mpl/(kg·mol–1)6.94×10–5
    锂的密度ρpl/(kg·m–3)534
    电导率σfilm/(S·m–1)6×10–5
    析锂的平衡电位Eeq, Li/V0
    下载: 导出CSV
  • [1]

    Yong J Y, Ramachandaramurthy V K, Tan K M, Mithulananthan N 2015 Renew. Sust. Energ. Rev. 49 365Google Scholar

    [2]

    Crabtree G 2019 Science 366 422Google Scholar

    [3]

    Huang W S, Feng X N, Han X B, Zhang W F, Jiang F C 2021 Cell Rep. Phys. Sci. 2 100285Google Scholar

    [4]

    Wang Q S, Mao B B, Stoliarov S I, Sun J H 2019 Prog. Energ. Combust. 73 95Google Scholar

    [5]

    Belova I V, Murch G E 1995 J. Appl. Phys. 77 127Google Scholar

    [6]

    Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y Y W, Xu B X 2019 J. Power Sources 413 259Google Scholar

    [7]

    Pastor-Fernández C, Uddin K, Chouchelamane G H, Widanage W D, Marco J 2017 J. Power Sources 360 301Google Scholar

    [8]

    王其钰, 王朔, 周格, 张杰男, 郑杰允, 禹习谦, 李泓 2018 物理学报 67 128501Google Scholar

    Wang Q Y, Wang S, Zhou G, Zhang J N, Zhen J Y, Yu X Q, Li H 2018 Acta Phys. Sin. 67 128501Google Scholar

    [9]

    Honbo H, Takei K, Ishii Y, Nishida T 2009 J. Power Sources 189 337Google Scholar

    [10]

    Mei W X, Duan Q L, Qin P, Xu J J, Wang Q S, Sun J H 2019 J. Electrochem. Soc. 166 A3319Google Scholar

    [11]

    Arora P, Doyle M, White R E 1999 J. Electrochem. Soc. 146 3543Google Scholar

    [12]

    Ren D S, Smith K, Guo D X, Han X B, Feng X N, Lu L G, Ouyang M G, Li J Q 2018 J. Electrochem. Soc. 165 A2167Google Scholar

    [13]

    Mei W X, Zhang L, Sun J H, Wang Q S 2020 Energy Storage Mater. 32 91Google Scholar

    [14]

    Yang S, Hua Y, Qiao D, Lian Y, Pan Y, He Y 2019 Electrochim. Acta 326 134928Google Scholar

    [15]

    Wang Y N, Li H, Wang Z K, Lian C, Xie Z F 2021 J. Energy Storage 43 103214Google Scholar

    [16]

    Schmidt A, Ramani E, Carraro T, Joos J, Weber A, Kamlah M, Ivers-Tiffée E 2021 Energy Technology 6 2000881

    [17]

    Ebner M, Geldmacher F, Marone F, Stampanoni M, Wood V 2013 Adv. Energ. Mater. 3 845Google Scholar

    [18]

    李涛, 程夕明, 胡晨华 2021 物理学报 70 138801Google Scholar

    Li T, Cheng X M, Hu C H, 2021 Acta Phys. Sin. 70 138801Google Scholar

    [19]

    Yang F Q 2016 Sci. China Phys. Mech. 59 44

    [20]

    Newman J S, Tobias C W 1962 J. Electrochem. Soc. 109 1183Google Scholar

    [21]

    Ge H, Aoki T, Ikeda N, Suga S, Isobe T, Li Z, Tabuchi Y, Zhang J 2017 J. Electrochem. Soc. 164 A1050Google Scholar

    [22]

    David W I F, Thackeray M M, De Picciotto L A, Goodenough J B 1987 J. Solid State Chem. 67 316Google Scholar

    [23]

    Yang F 2005 Mater. Sci. Eng. A 409 153Google Scholar

    [24]

    Wu B, Lu W 2017 J. Power Sources 360 360Google Scholar

    [25]

    Guo M, Sikha G 2010 J. Electrochem. Soc. 158 A122

    [26]

    蒋跃辉, 艾亮, 贾明, 程昀, 杜双龙, 李书国 2017 物理学报 66 118202Google Scholar

    Jang Y H, Ai L, Jia M, Cheng J, Du S L, Li S G 2017 Acta Phys. Sin. 66 118202Google Scholar

    [27]

    Wu W, Xiao X, Huang X, Yan S 2014 Comp. Mater. Sci. 83 127Google Scholar

    [28]

    Samba A, Omar N, Gualous H, Capron O, Van B P, Van M J 2014 Electrochim. Acta 147 319Google Scholar

    [29]

    Lai Y, Du S, Ai L, Cheng Y, Tang Y, Jia M 2015 International Journal of Hydrogen Energy 40 13039Google Scholar

    [30]

    Mei W X, Chen H, Sun J H, Wang Q S 2018 Appl. Therm. Eng. 142 148Google Scholar

    [31]

    Hahn M, Buqa H, Ruch P W, Goers D, Spahr M E, Ufheil J, Novák P, Kötz R 2008 Electrochem. Solid State Lett. 11 A151Google Scholar

    [32]

    Kondrakov A O, Schmidt A, Xu J, Geßwein H, Mönig R, Hartmann P, Sommer H, Brezesinski T, Janek J 2017 J. Phys. Chem. C 121 3286Google Scholar

    [33]

    Hosseinzadeh E, Genieser R, Worwood D, Barai A, Marco J, Jennings P 2018 J. Power Sources 382 77Google Scholar

    [34]

    Yang Y, Zhong X L, Xu L 2024 J. Energy Chem. 97 453Google Scholar

    [35]

    魏振伟, 毛烁源, 汪宇, 韩雪冰, 卢兰光, 欧阳明高 2024 上海理工大学学报 46 1

    Wei Z W, Mao L Y, Wang Y, Lu L G, Ouyang M G 2024 J. Univ. Shanghai Sci. Tech. 46 1

    [36]

    Mao S, Wang Y, Lu Y 2024 InfoMat e12612

    [37]

    Wu W, Ma R, Liu J, Liu M, Wang We, Wang Q 2021 Int. J. Heat Mass Tran. 170 121024Google Scholar

    [38]

    Luo C X, Shi C G, Yu Z Y, Huang L, Sun S G 2022 J. Electrochem. 28 7

    [39]

    Manthiram A 2020 Nat. Commun. 11 1550Google Scholar

  • [1] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展. 物理学报, doi: 10.7498/aps.72.20230258
    [2] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究. 物理学报, doi: 10.7498/aps.72.20230824
    [3] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, doi: 10.7498/aps.70.20202130
    [4] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, doi: 10.7498/aps.70.20210455
    [5] 邢丽丹, 谢启明, 李伟善. 电解液及其界面电化学性质的机理研究进展. 物理学报, doi: 10.7498/aps.69.20201553
    [6] 徐晗, 张璐, 党政. 固体氧化物燃料电池模式阳极内传输与电化学反应耦合机理. 物理学报, doi: 10.7498/aps.69.20191697
    [7] 刘征宇, 杨昆, 魏自红, 姚利阳. 包含液相扩散方程简化的锂离子电池电化学模型. 物理学报, doi: 10.7498/aps.68.20190159
    [8] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制. 物理学报, doi: 10.7498/aps.68.20181726
    [9] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190503
    [10] 孙凤楠, 冯露, 卜家贺, 张静, 李林安, 王世斌. 应力对锂离子电池中空碳包覆硅负极电化学性能的影响. 物理学报, doi: 10.7498/aps.68.20182279
    [11] 徐紫巍, 石常帅, 赵光辉, 王明渊, 刘桂武, 乔冠军. 电化学析氢反应中单层MoSe2氢吸附机理第一性原理研究. 物理学报, doi: 10.7498/aps.67.20180882
    [12] 李娟, 汝强, 胡社军, 郭凌云. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究. 物理学报, doi: 10.7498/aps.63.168201
    [13] 汤依伟, 贾明, 程昀, 张凯, 张红亮, 李劼. 基于电化学与热能的耦合关系演算聚合物锂离子动力电池的温度状态及分布. 物理学报, doi: 10.7498/aps.62.158201
    [14] 张朝阳, 李中洋, 秦昌亮, 印洁, 张长桃, 毛卫平, 冯钦玉. 脉冲激光与电化学复合的应力刻蚀加工质量研究. 物理学报, doi: 10.7498/aps.62.094210
    [15] 杨斌鑫, 欧阳洁. 黏弹性熔体充模流动诱导残余应力模拟. 物理学报, doi: 10.7498/aps.61.234602
    [16] 刘光友, 谭兴文, 姚金才, 王 振, 熊祖洪. 电化学制备薄黑硅抗反射膜. 物理学报, doi: 10.7498/aps.57.514
    [17] 王 杰, 徐友龙, 陈 曦, 杜显锋, 李喜飞. 电化学法制备高密度导电聚吡咯的性能研究. 物理学报, doi: 10.7498/aps.56.4256
    [18] 谷建峰, 付伟佳, 刘 明, 刘志文, 马春雨, 张庆瑜. 电化学沉积高c轴取向ZnO薄膜及其光学性能分析. 物理学报, doi: 10.7498/aps.56.5979
    [19] 胡海宁, 陈京兰, 吴光恒, 陈丽婕, 刘何燕, 李养贤, 曲静萍. 电化学沉积Fe与FePd纳米线阵列的磁性. 物理学报, doi: 10.7498/aps.54.4370
    [20] 胡海宁, 陈京兰, 吴光恒. 电化学沉积Fe单晶纳米线生长中的取向控制. 物理学报, doi: 10.7498/aps.54.389
计量
  • 文章访问数:  248
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-15
  • 修回日期:  2024-12-10
  • 上网日期:  2024-12-19

/

返回文章
返回