搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电化学析氢反应中单层MoSe2氢吸附机理第一性原理研究

徐紫巍 石常帅 赵光辉 王明渊 刘桂武 乔冠军

引用本文:
Citation:

电化学析氢反应中单层MoSe2氢吸附机理第一性原理研究

徐紫巍, 石常帅, 赵光辉, 王明渊, 刘桂武, 乔冠军

Hydrogen adsorption mechanism on single-layer MoSe2 for hydrogen evolution reaction: First-principles study

Xu Zi-Wei, Shi Chang-Shuai, Zhao Guang-Hui, Wang Ming-Yuan, Liu Gui-Wu, Qiao Guan-Jun
PDF
导出引用
  • 基于密度泛函理论的第一性原理方法,本文计算了单层2H相MoSe2纳米材料表面及两种边缘(Mo原子边缘、Se原子边缘)不同活性位点、不同氢原子吸附率下的氢吸附吉布斯自由能(Gibbs free energy,用△GH0表示),并且将对应的微观结构进行了系统分析比较,得出△GH0最接近于0 eV的吸附位点及相应的吸附率.同时,结合差分电荷密度和电负性理论,分析了单层MoSe2两种边缘氢吸附的电荷转移及成键特性,进一步解释了不同吸附位点呈现的结构与能量趋势.最后,通过基于密度泛函理论的第一性原理分子动力学模拟,研究了高温热运动对两种边缘氢吸附的影响,获得了氢原子发生脱附的临界温度及对应的微观动态过程.该理论研究从原子尺度揭示了单层2H相MoSe2纳米材料边缘不同位点在不同温度下对氢原子吸附和脱附的微观机理,证实了Mo原子边缘的畸变和重构行为,加深了对实验中单层2H相MoSe2边缘在不同温度下氢吸附机理的理解,为实验中通过控制MoSe2边缘设计廉价高效的析氢催化剂提供理论参考.
    Based on the first-principles of the density functional theory, the Gibbs free energies (△GH0) of the hydrogen adsorption on the 2H-phase molybdenum diselenide monolayer (MoSe2) with different active sites and hydrogen coverage rates are calculated. The calculated results reveal that several ideal adsorbed rates and sites are very close to those at thermoneutral state (△GH0~0). To compare their catalytic ability in the hydrogen evolution reaction (HER), the exchange current density (i0) as a function of △GH0 is calculated as a volcano curve. Two sites located at the top of volcano curve present higher exchange current densities than that of Pt catalyst. The charge transfers and the bonding details of the two edge-hydrogen-adsorptions (Mo edge and Se edge) are analyzed by the charge density difference and electronegativity as the associated structures and relative △GH0 are further explained. It is found that the localized charge transfer distributed uniformly between the hydrogen atoms and the adsorption sites can facilitate the catalytic ability of HER. For this reason, the catalytic ability of HER for the Se edge is more stable than that of Mo edge with less sensitivity to the absorption sites and hydrogen coverage rates. Based on the first-principles molecular dynamics (MD) simulation, finally, the influences of the thermal motion on the two kinds of structures of hydrogen adsorption at the higher temperature are explored, with the critical temperature for the hydrogen desorption as well as the atomistic dynamics discovered. It is worth mentioning that during the structure optimization and MD simulation, the edge deformation and reconstruction are discovered, respectively, which indicates that the ideal edge of MoSe2 may not be the most stable structure, which will change with the external conditions. This theoretic study reveals the atomistic mechanisms of the hydrogen adsorption and desorption of the single-layer 2H-phase MoSe2 at different temperatures, with the edge lattice deformation and reconstruction discovered, which can deepen our insights into the HER mechanisms near the edges of the 2H-phase MoSe2 at different temperatures and provide theoretic guidelines for designing the high-efficient and low-cost catalyst in the HER through tuning the MoSe2 edges.
      Corresponding author: Xu Zi-Wei, ziweixu2014@ujs.edu.cn;gjqiao@ujs.edu.cn ; Qiao Guan-Jun, ziweixu2014@ujs.edu.cn;gjqiao@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774136, 11404144), the China Postdoctoral Science Foundation (Grant Nos. 2016M601722, 2018T110445), and the Research Foundation of Jiangsu University, China (Grant No. 14JDG120).
    [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti I V, Kis A 2011 Nat. Nanotechnol. 6 147

    [3]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263

    [4]

    Frame F A, Osterloh F E 2010 J. Phys. Chem. C 114 10628

    [5]

    Huang M, Cho K 2009 J. Phys. Chem. C 113 5238

    [6]

    Liu Z K, Lau S P, Yan F 2015 Chem. Soc. Rev. 44 5638

    [7]

    Xiang Q J, Yu J G, Jaroniec M 2012 J. Am. Chem. Soc. 134 6575

    [8]

    Ding Q, Meng F, English C R, Caban-Acevedo M, Shearer M J, Liang D, Daniel A S, Hamers R J, Jin S 2014 J. Am. Chem. Soc. 136 8504

    [9]

    Chang K, Mei Z W, Wang T, Kang Q, Ouyang S X, Ye J H 2014 ACS Nano 8 7078

    [10]

    Stephenson T, Li Z, Olsen B, Mitlin D 2014 Energy Environ. Sci. 7 209

    [11]

    Zhu C B, Mu X K, van Aken P A, Yu Y, Maier J 2014 Angew. Chem. Int. Ed. 53 2152

    [12]

    Deng D H, Fu Q, Novoselov K S, Fu Q, Zheng N F, Tian Z Q, Bao X H 2016 Nat. Nanotechnol. 11 218

    [13]

    Asadi M, Kumar B, Liu C, Phillips P, Yasaei P, Behranginia A, Zapol P, Klie R F, Curss L A, Salehi-Khojin A 2016 ACS Nano 10 2167

    [14]

    Yuwen L H, Xu F, Xue B, Luo Z M, Zhang Q, Bao B Q, Su S, Weng L X, Huang W, Wang L H 2014 Nanoscale 6 5762

    [15]

    Huang H, Feng X, Du C C, Wu S Y, Song W B 2015 J. Mater. Chem. A 3 16050

    [16]

    Gordon R B, Bertram M, Graedel T E 2006 Proc. Natl. Acad. Sci. USA 103 1209

    [17]

    Kong D, Wang H, Cha J J, Pasta M, Koski K J, Yao J, Cui Y 2013 Nano Lett. 13 1341

    [18]

    Ramakrishna Matte H S S, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R 2010 Angew. Chem. Int. Ed. 49 4059

    [19]

    Laursen A B, Kegnæs S, Dahl S, Chorkendorff I 2012 Energy Environ. Sci. 5 5577

    [20]

    Merki D, Hu X L 2011 Energy Environ. Sci. 4 3878

    [21]

    Tang H, Dou K P, Kaun C C, Kuang Q, Yang S H 2014 J. Mater. Chem. A 2 360

    [22]

    Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I 2007 Science 317 100

    [23]

    Hinnemann B, Moses P G, Bonde J, Jørgensen K P, Nielsen J H, Horch S, Chorkendorff I B, Nørskov J K 2005 J. Am. Chem. Soc. 127 5308

    [24]

    Shu H B, Zhou D, Li F, Cao D, Chen X S 2017 ACS Appl. Mater. Interfaces 9 42688

    [25]

    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H 2011 J. Am. Chem. Soc. 133 7296

    [26]

    Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X W D, Xie, Y 2013 Adv. Mater. 25 5807

    [27]

    Voiry D, Salehi M, Silva R, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G, Chhowalla M 2013 Nano Lett. 13 6222

    [28]

    Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L, Jin S 2013 J. Am. Chem. Soc. 135 10274

    [29]

    Eftekhari A 2017 Appl. Mater. Today 8 1

    [30]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [31]

    Kohn W, Sham L 1965 Phys. Rev. 140 A1133

    [32]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [33]

    Kresse G Furthmller J 1996 Comput. Mater. Sci. 6 15

    [34]

    Liu L L, Li X Y, Xu L C, Liu R P, Yang Z 2017 J. Taiyuan Univ. Technol. 48 570 (in Chinese)[刘丽丽, 李秀燕, 徐利春, 刘瑞萍, 杨致 2017 太原理工大学学报 48 570]

    [35]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I, Nørskov J K 2006 Nat. Mater. 5 909

    [36]

    Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406

    [37]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [38]

    Zheng Y, Jiao Y, Jaronice M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 52

    [39]

    Noerskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005 J. ElectroChem. Soc. 152 J23

    [40]

    Wang B B, Zhu G, Wang Q 2016 Acta Phys. Sin. 65 038102 (in Chinese)[王必本, 朱恪, 王强 2016 物理学报 65 038102]

    [41]

    Tsai C, Chan K, Abild-Pedersen F, Nørskov J K 2014 Phys. Chem. Chem. Phys. 16 13156

    [42]

    Qu B, Yu X B, Chen Y J, Zhu C L, Li C Y, Yin Z X, Zhang X T 2015 ACS Appl. Mater. Interfaces 7 14170

    [43]

    Cui P, Choi J H, Chen W, Zeng J, Shih C K, Li Z Y, Zhang Z Y 2017 Nano Lett. 17 1097

    [44]

    Yang H X, Yan X R, Cui J Z, Wang J H, Wang X R, Qin X 2002 Inorganic Chemistry (Vol. 4) (Beijing: Higher Education Press) pp138-145 (in Chinese)[杨宏孝, 颜秀茹, 崔建中, 王建辉, 王兴尧, 秦学 2002 无机化学 (第四版) (北京: 高等教育出版社) 第138–145页]

    [45]

    Chen Y, Cui P, Ren X B, Zhang C D, Jin C H, Zhang Z Y, Shih C K 2017 Nat. Commun. 8 15135

  • [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti I V, Kis A 2011 Nat. Nanotechnol. 6 147

    [3]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263

    [4]

    Frame F A, Osterloh F E 2010 J. Phys. Chem. C 114 10628

    [5]

    Huang M, Cho K 2009 J. Phys. Chem. C 113 5238

    [6]

    Liu Z K, Lau S P, Yan F 2015 Chem. Soc. Rev. 44 5638

    [7]

    Xiang Q J, Yu J G, Jaroniec M 2012 J. Am. Chem. Soc. 134 6575

    [8]

    Ding Q, Meng F, English C R, Caban-Acevedo M, Shearer M J, Liang D, Daniel A S, Hamers R J, Jin S 2014 J. Am. Chem. Soc. 136 8504

    [9]

    Chang K, Mei Z W, Wang T, Kang Q, Ouyang S X, Ye J H 2014 ACS Nano 8 7078

    [10]

    Stephenson T, Li Z, Olsen B, Mitlin D 2014 Energy Environ. Sci. 7 209

    [11]

    Zhu C B, Mu X K, van Aken P A, Yu Y, Maier J 2014 Angew. Chem. Int. Ed. 53 2152

    [12]

    Deng D H, Fu Q, Novoselov K S, Fu Q, Zheng N F, Tian Z Q, Bao X H 2016 Nat. Nanotechnol. 11 218

    [13]

    Asadi M, Kumar B, Liu C, Phillips P, Yasaei P, Behranginia A, Zapol P, Klie R F, Curss L A, Salehi-Khojin A 2016 ACS Nano 10 2167

    [14]

    Yuwen L H, Xu F, Xue B, Luo Z M, Zhang Q, Bao B Q, Su S, Weng L X, Huang W, Wang L H 2014 Nanoscale 6 5762

    [15]

    Huang H, Feng X, Du C C, Wu S Y, Song W B 2015 J. Mater. Chem. A 3 16050

    [16]

    Gordon R B, Bertram M, Graedel T E 2006 Proc. Natl. Acad. Sci. USA 103 1209

    [17]

    Kong D, Wang H, Cha J J, Pasta M, Koski K J, Yao J, Cui Y 2013 Nano Lett. 13 1341

    [18]

    Ramakrishna Matte H S S, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R 2010 Angew. Chem. Int. Ed. 49 4059

    [19]

    Laursen A B, Kegnæs S, Dahl S, Chorkendorff I 2012 Energy Environ. Sci. 5 5577

    [20]

    Merki D, Hu X L 2011 Energy Environ. Sci. 4 3878

    [21]

    Tang H, Dou K P, Kaun C C, Kuang Q, Yang S H 2014 J. Mater. Chem. A 2 360

    [22]

    Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I 2007 Science 317 100

    [23]

    Hinnemann B, Moses P G, Bonde J, Jørgensen K P, Nielsen J H, Horch S, Chorkendorff I B, Nørskov J K 2005 J. Am. Chem. Soc. 127 5308

    [24]

    Shu H B, Zhou D, Li F, Cao D, Chen X S 2017 ACS Appl. Mater. Interfaces 9 42688

    [25]

    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H 2011 J. Am. Chem. Soc. 133 7296

    [26]

    Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X W D, Xie, Y 2013 Adv. Mater. 25 5807

    [27]

    Voiry D, Salehi M, Silva R, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G, Chhowalla M 2013 Nano Lett. 13 6222

    [28]

    Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L, Jin S 2013 J. Am. Chem. Soc. 135 10274

    [29]

    Eftekhari A 2017 Appl. Mater. Today 8 1

    [30]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [31]

    Kohn W, Sham L 1965 Phys. Rev. 140 A1133

    [32]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [33]

    Kresse G Furthmller J 1996 Comput. Mater. Sci. 6 15

    [34]

    Liu L L, Li X Y, Xu L C, Liu R P, Yang Z 2017 J. Taiyuan Univ. Technol. 48 570 (in Chinese)[刘丽丽, 李秀燕, 徐利春, 刘瑞萍, 杨致 2017 太原理工大学学报 48 570]

    [35]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I, Nørskov J K 2006 Nat. Mater. 5 909

    [36]

    Reuter K, Scheffler M 2001 Phys. Rev. B 65 035406

    [37]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [38]

    Zheng Y, Jiao Y, Jaronice M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 52

    [39]

    Noerskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005 J. ElectroChem. Soc. 152 J23

    [40]

    Wang B B, Zhu G, Wang Q 2016 Acta Phys. Sin. 65 038102 (in Chinese)[王必本, 朱恪, 王强 2016 物理学报 65 038102]

    [41]

    Tsai C, Chan K, Abild-Pedersen F, Nørskov J K 2014 Phys. Chem. Chem. Phys. 16 13156

    [42]

    Qu B, Yu X B, Chen Y J, Zhu C L, Li C Y, Yin Z X, Zhang X T 2015 ACS Appl. Mater. Interfaces 7 14170

    [43]

    Cui P, Choi J H, Chen W, Zeng J, Shih C K, Li Z Y, Zhang Z Y 2017 Nano Lett. 17 1097

    [44]

    Yang H X, Yan X R, Cui J Z, Wang J H, Wang X R, Qin X 2002 Inorganic Chemistry (Vol. 4) (Beijing: Higher Education Press) pp138-145 (in Chinese)[杨宏孝, 颜秀茹, 崔建中, 王建辉, 王兴尧, 秦学 2002 无机化学 (第四版) (北京: 高等教育出版社) 第138–145页]

    [45]

    Chen Y, Cui P, Ren X B, Zhang C D, Jin C H, Zhang Z Y, Shih C K 2017 Nat. Commun. 8 15135

计量
  • 文章访问数:  2169
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-04
  • 修回日期:  2018-09-05
  • 刊出日期:  2018-11-05

电化学析氢反应中单层MoSe2氢吸附机理第一性原理研究

    基金项目: 

    国家自然科学基金(批准号:11774136,11404144)、中国博士后科学基金(批准号:2016M601722,2018T110445)和江苏大学科研基金(批准号:14JDG120)资助的课题.

摘要: 基于密度泛函理论的第一性原理方法,本文计算了单层2H相MoSe2纳米材料表面及两种边缘(Mo原子边缘、Se原子边缘)不同活性位点、不同氢原子吸附率下的氢吸附吉布斯自由能(Gibbs free energy,用△GH0表示),并且将对应的微观结构进行了系统分析比较,得出△GH0最接近于0 eV的吸附位点及相应的吸附率.同时,结合差分电荷密度和电负性理论,分析了单层MoSe2两种边缘氢吸附的电荷转移及成键特性,进一步解释了不同吸附位点呈现的结构与能量趋势.最后,通过基于密度泛函理论的第一性原理分子动力学模拟,研究了高温热运动对两种边缘氢吸附的影响,获得了氢原子发生脱附的临界温度及对应的微观动态过程.该理论研究从原子尺度揭示了单层2H相MoSe2纳米材料边缘不同位点在不同温度下对氢原子吸附和脱附的微观机理,证实了Mo原子边缘的畸变和重构行为,加深了对实验中单层2H相MoSe2边缘在不同温度下氢吸附机理的理解,为实验中通过控制MoSe2边缘设计廉价高效的析氢催化剂提供理论参考.

English Abstract

参考文献 (45)
补充材料:

目录

    /

    返回文章
    返回