-
为研究CO降低临氢管线钢的氢脆机制, 采用基于自旋极化密度泛函理论的第一性原理方法, 研究H2和CO在Fe(110)表面吸附过程中的势能变化以及不同应变时的吸附. 研究发现Fe(110)表面对CO的吸引力大于H2, 且预先吸附的CO能阻碍H2的解离, 减弱H与Fe之间的作用力. 态密度分析结果表明CO中的C原子与Fe原子有多个共轭峰, 有强烈的共轭杂化作用. 不同应变Fe(110)表面的吸附结果表明CO在Fe(110)表面的吸附能比H2更负, CO与表面的结合强度更大, CO优先吸附. 结合热力学定量计算分析CO分压对氢覆盖度影响, 结果表明随着CO的分压升高, 氢覆盖度降低. 表面拉应变越大, 需要的CO分压越高. 拉应变使得H2, CO吸附能差减小, CO阻碍氢吸附的能力降低是拉应变表面需要更高CO分压的原因.In this work, the competitive adsorption behavior of H2 and CO on strained Fe(110) are investigated by the first-principles method based on the spin-polarized density functional theory to study the hydrogen embrittlement of steels. The results show that the most stable adsorption site for CO is top site, and the orbital of CO molecule hybridizing with Fe 3p and 4s states illustrates a strong electronic interaction between them. The adsorption energy values of CO at the four calculated adsorption sites are more negative than those of H2, which favors the binding with Fe(110) surface. The potential energy variations for CO and H2 molecules close to the surface are calculated. The attractive force of the Fe(110) surface acting on CO in 1.5–3 Å is greater than that acting on H2. The pre-adsorbed CO increases the dissociation energy barrier of H2 from 0.08 eV to 0.13 eV but reduces the force between H2 and surface. The surface tensile strain enhances the interaction between hydrogen and Fe(110), which, however, is reduced by the compressive strain. The opposite tendency is found in the adsorption of CO. The binding strength of CO is stronger than that of H2 on the strained Fe(110) surface. The difference in adsorption energy between CO and H2 decreases with tensile strain increasing. The effect of surface strain and partial pressure of CO gas phase on the surface coverage ratio of H atom are also calculated quantitatively based on thermodynamics at 298 K, with the partial pressure of H2 set to be 10 MPa. The surface ratio of the H atom decreases with partial pressure of CO increasing. The hydrogen coverage drops nearly to zero when the partial pressure of CO reaches a certain value. This result reveals that CO can inhibit hydrogen adsorption on Fe surface. In the case where the surface ratio of hydrogen decreases to 1%, the corresponding CO partial pressures are 105 Pa, 1.1 × 103 Pa, 2.4 × 105 Pa on –2%, 0, 2% strained Fe(110) surface, respectively. High CO partial pressure is needed to suppress the hydrogen adsorption since the binding strength of CO is close to that of H2 on the expanded surface.
[1] Liu Z, Han H, Xiang C 2018 Energ. Policy 115 92Google Scholar
[2] Gorji T B, Ranjbar A A, Mirzababaei S N 2015 Sol. Energy 119 332Google Scholar
[3] Mahian O, Kianifar A, Kalogirou S A, Pop I, Wongwises S 2013 Int. J. Heat Mass Transfer 57 582Google Scholar
[4] Sherif S A, Barbir F, Veziroglu T N 2005 Sol. Energy 78 647Google Scholar
[5] 舟丹 2017 中外能源 22 16
Zhou D 2017 Sin. Glo Energ. 22 16
[6] Dodds P E, Mcdowall W 2013 Energ. Policy 60 305Google Scholar
[7] Briottet L, Batisse R, Dinechin A 2012 Int. J. Hydrogen Energy 37 9423Google Scholar
[8] Nanninga N, Slifka A, Levy Y 2010 J. Res. Nat. Inst. Stand. Technol. 115 437Google Scholar
[9] Kim C M, Kim Y P, Kim W S 2017 J. Mech. Sci. Technol. 31 3691Google Scholar
[10] Zhao W, Min Y, Zhang T, Deng Q, Jiang W, Jiang W 2018 Corros. Sci. 133 251Google Scholar
[11] Goikoetxea I, Juaristi J, Muino R D 2014 Phys. Rev. Lett. 113 066103Google Scholar
[12] Jeon J, Yu B D, Hyun S 2016 J. Kor. Phy. Soc. 69 1776Google Scholar
[13] Yang L, Shu D J, Li S C 2016 Phys. Chem. Chem. Phys. 18 14833
[14] Huo C, Li Y W, Wang J G 2005 J. Phys. Chem. B 109 14160Google Scholar
[15] Dan C S 2005 Catal. Today 105 44Google Scholar
[16] Kunisada Y, Sakaguchi N 2015 J. Jap. Ins. Met. A 79 447Google Scholar
[17] Amaya R S, Linares D H, Duarte H A 2016 J. Phys. Chem. C 120 10830
[18] Huo C F, Liao X Y 2007 J. Phys. Chem. C 111 4305Google Scholar
[19] Bernasek S L, Zappone M, Jiang P 1992 Surf. Sci. 272 53Google Scholar
[20] Wang T, Tian X X, Yang Y, Li Y W, Wang J G, Beller M, Jiao H J 2016 Catal. Today 261 82Google Scholar
[21] Huo C F, Ren J, Li Y W 2007 J. Catal. 249 174Google Scholar
[22] Burke M L, Madix R J 1990 Surf. Sci. 237 20Google Scholar
[23] Xie W, Peng L, Peng D 2014 Appl. Surf. Sci. 296 47Google Scholar
[24] 潘金生, 田民波 2011 材料科学基础 (北京: 清华大学出版社出版) 第156页
Pan J S, Tian M B 2011 Fundamentals of Material Science (Beijing: Tsinghua University Press) p156 (in Chinese)
[25] Clark S J, Segall M D, Pickard C J,Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567Google Scholar
[26] 张凤春, 李春福, 文平 2014 物理学报 63 197101Google Scholar
Zhang F C, Li C F, Wen P 2014 Acta Phys. Sin. 63 197101Google Scholar
[27] 王明军, 李春福, 文平, 张凤春, 王垚, 刘恩佐 2016 物理学报 65 037101Google Scholar
Wang M J, Li C F, Wen P, Zhang F C, Wang Y, Liu E Z 2016 Acta Phys. Sin. 65 037101Google Scholar
[28] Chase M W 1998 NIST-JANAF Thermochemical Tables (4th Ed.) (New York: The American Institute of Physics for The National Institute of Standards and Technology) p641
[29] Kuwabara A, Saito Y, Koyama Y 2008 Mater. Trans. 49 2484Google Scholar
[30] Chen Y H 2005 M. S. Thesis (Guangzhou: Ji'nan University) (in Chinese)
[31] Jiang D E, Carter E A 2004 Surf. Sci. 570 167Google Scholar
[32] Moon D W, Cameron S, Zaera F, Eberhardt W, Carr R, Bernasek L, Gland J L, Dwyer J 1987 Surf. Sci. 180 L123
[33] Wang H, Nie X, Guo X, Song C S 2016 J. CO2 Uti. 15 107Google Scholar
[34] Gholizadeh R, Yu Y X 2015 Appl. Surf. Sci. 357 1187Google Scholar
[35] Staykov A, Yamabe J, Somerday B P 2014 Int. J. Quantum Chem. 114 626Google Scholar
-
表 1 CO与H2在Fe(110)表面不同位置的吸附能(eV)
Table 1. Adsorption energies of CO and H2 on high symmetry sites of Fe(110).
吸附物 top sb lb tf CO –1.89 –1.64 –1.82 –1.83 CO[31] (PBE) –1.88 –1.63 –1.80 — H2 –0.47 –0.82 –1.04 –1.33 -
[1] Liu Z, Han H, Xiang C 2018 Energ. Policy 115 92Google Scholar
[2] Gorji T B, Ranjbar A A, Mirzababaei S N 2015 Sol. Energy 119 332Google Scholar
[3] Mahian O, Kianifar A, Kalogirou S A, Pop I, Wongwises S 2013 Int. J. Heat Mass Transfer 57 582Google Scholar
[4] Sherif S A, Barbir F, Veziroglu T N 2005 Sol. Energy 78 647Google Scholar
[5] 舟丹 2017 中外能源 22 16
Zhou D 2017 Sin. Glo Energ. 22 16
[6] Dodds P E, Mcdowall W 2013 Energ. Policy 60 305Google Scholar
[7] Briottet L, Batisse R, Dinechin A 2012 Int. J. Hydrogen Energy 37 9423Google Scholar
[8] Nanninga N, Slifka A, Levy Y 2010 J. Res. Nat. Inst. Stand. Technol. 115 437Google Scholar
[9] Kim C M, Kim Y P, Kim W S 2017 J. Mech. Sci. Technol. 31 3691Google Scholar
[10] Zhao W, Min Y, Zhang T, Deng Q, Jiang W, Jiang W 2018 Corros. Sci. 133 251Google Scholar
[11] Goikoetxea I, Juaristi J, Muino R D 2014 Phys. Rev. Lett. 113 066103Google Scholar
[12] Jeon J, Yu B D, Hyun S 2016 J. Kor. Phy. Soc. 69 1776Google Scholar
[13] Yang L, Shu D J, Li S C 2016 Phys. Chem. Chem. Phys. 18 14833
[14] Huo C, Li Y W, Wang J G 2005 J. Phys. Chem. B 109 14160Google Scholar
[15] Dan C S 2005 Catal. Today 105 44Google Scholar
[16] Kunisada Y, Sakaguchi N 2015 J. Jap. Ins. Met. A 79 447Google Scholar
[17] Amaya R S, Linares D H, Duarte H A 2016 J. Phys. Chem. C 120 10830
[18] Huo C F, Liao X Y 2007 J. Phys. Chem. C 111 4305Google Scholar
[19] Bernasek S L, Zappone M, Jiang P 1992 Surf. Sci. 272 53Google Scholar
[20] Wang T, Tian X X, Yang Y, Li Y W, Wang J G, Beller M, Jiao H J 2016 Catal. Today 261 82Google Scholar
[21] Huo C F, Ren J, Li Y W 2007 J. Catal. 249 174Google Scholar
[22] Burke M L, Madix R J 1990 Surf. Sci. 237 20Google Scholar
[23] Xie W, Peng L, Peng D 2014 Appl. Surf. Sci. 296 47Google Scholar
[24] 潘金生, 田民波 2011 材料科学基础 (北京: 清华大学出版社出版) 第156页
Pan J S, Tian M B 2011 Fundamentals of Material Science (Beijing: Tsinghua University Press) p156 (in Chinese)
[25] Clark S J, Segall M D, Pickard C J,Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567Google Scholar
[26] 张凤春, 李春福, 文平 2014 物理学报 63 197101Google Scholar
Zhang F C, Li C F, Wen P 2014 Acta Phys. Sin. 63 197101Google Scholar
[27] 王明军, 李春福, 文平, 张凤春, 王垚, 刘恩佐 2016 物理学报 65 037101Google Scholar
Wang M J, Li C F, Wen P, Zhang F C, Wang Y, Liu E Z 2016 Acta Phys. Sin. 65 037101Google Scholar
[28] Chase M W 1998 NIST-JANAF Thermochemical Tables (4th Ed.) (New York: The American Institute of Physics for The National Institute of Standards and Technology) p641
[29] Kuwabara A, Saito Y, Koyama Y 2008 Mater. Trans. 49 2484Google Scholar
[30] Chen Y H 2005 M. S. Thesis (Guangzhou: Ji'nan University) (in Chinese)
[31] Jiang D E, Carter E A 2004 Surf. Sci. 570 167Google Scholar
[32] Moon D W, Cameron S, Zaera F, Eberhardt W, Carr R, Bernasek L, Gland J L, Dwyer J 1987 Surf. Sci. 180 L123
[33] Wang H, Nie X, Guo X, Song C S 2016 J. CO2 Uti. 15 107Google Scholar
[34] Gholizadeh R, Yu Y X 2015 Appl. Surf. Sci. 357 1187Google Scholar
[35] Staykov A, Yamabe J, Somerday B P 2014 Int. J. Quantum Chem. 114 626Google Scholar
计量
- 文章访问数: 11537
- PDF下载量: 224
- 被引次数: 0