搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO与H2在应变Fe(110)表面的竞争吸附

李守英 赵卫民 乔建华 王勇

引用本文:
Citation:

CO与H2在应变Fe(110)表面的竞争吸附

李守英, 赵卫民, 乔建华, 王勇

Competitive adsorption of CO and H2 on strained Fe(110) surface

Li Shou-Ying, Zhao Wei-Min, Qiao Jian-Hua, Wang Yong
PDF
HTML
导出引用
  • 为研究CO降低临氢管线钢的氢脆机制, 采用基于自旋极化密度泛函理论的第一性原理方法, 研究H2和CO在Fe(110)表面吸附过程中的势能变化以及不同应变时的吸附. 研究发现Fe(110)表面对CO的吸引力大于H2, 且预先吸附的CO能阻碍H2的解离, 减弱H与Fe之间的作用力. 态密度分析结果表明CO中的C原子与Fe原子有多个共轭峰, 有强烈的共轭杂化作用. 不同应变Fe(110)表面的吸附结果表明CO在Fe(110)表面的吸附能比H2更负, CO与表面的结合强度更大, CO优先吸附. 结合热力学定量计算分析CO分压对氢覆盖度影响, 结果表明随着CO的分压升高, 氢覆盖度降低. 表面拉应变越大, 需要的CO分压越高. 拉应变使得H2, CO吸附能差减小, CO阻碍氢吸附的能力降低是拉应变表面需要更高CO分压的原因.
    In this work, the competitive adsorption behavior of H2 and CO on strained Fe(110) are investigated by the first-principles method based on the spin-polarized density functional theory to study the hydrogen embrittlement of steels. The results show that the most stable adsorption site for CO is top site, and the orbital of CO molecule hybridizing with Fe 3p and 4s states illustrates a strong electronic interaction between them. The adsorption energy values of CO at the four calculated adsorption sites are more negative than those of H2, which favors the binding with Fe(110) surface. The potential energy variations for CO and H2 molecules close to the surface are calculated. The attractive force of the Fe(110) surface acting on CO in 1.5–3 Å is greater than that acting on H2. The pre-adsorbed CO increases the dissociation energy barrier of H2 from 0.08 eV to 0.13 eV but reduces the force between H2 and surface. The surface tensile strain enhances the interaction between hydrogen and Fe(110), which, however, is reduced by the compressive strain. The opposite tendency is found in the adsorption of CO. The binding strength of CO is stronger than that of H2 on the strained Fe(110) surface. The difference in adsorption energy between CO and H2 decreases with tensile strain increasing. The effect of surface strain and partial pressure of CO gas phase on the surface coverage ratio of H atom are also calculated quantitatively based on thermodynamics at 298 K, with the partial pressure of H2 set to be 10 MPa. The surface ratio of the H atom decreases with partial pressure of CO increasing. The hydrogen coverage drops nearly to zero when the partial pressure of CO reaches a certain value. This result reveals that CO can inhibit hydrogen adsorption on Fe surface. In the case where the surface ratio of hydrogen decreases to 1%, the corresponding CO partial pressures are 105 Pa, 1.1 × 103 Pa, 2.4 × 105 Pa on –2%, 0, 2% strained Fe(110) surface, respectively. High CO partial pressure is needed to suppress the hydrogen adsorption since the binding strength of CO is close to that of H2 on the expanded surface.
      通信作者: 赵卫民, zhaowm@upc.edu.cn
    • 基金项目: 山东省自然科学基金(批准号: ZR2017MEE005)资助的课题
      Corresponding author: Zhao Wei-Min, zhaowm@upc.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2017MEE005)
    [1]

    Liu Z, Han H, Xiang C 2018 Energ. Policy 115 92Google Scholar

    [2]

    Gorji T B, Ranjbar A A, Mirzababaei S N 2015 Sol. Energy 119 332Google Scholar

    [3]

    Mahian O, Kianifar A, Kalogirou S A, Pop I, Wongwises S 2013 Int. J. Heat Mass Transfer 57 582Google Scholar

    [4]

    Sherif S A, Barbir F, Veziroglu T N 2005 Sol. Energy 78 647Google Scholar

    [5]

    舟丹 2017 中外能源 22 16

    Zhou D 2017 Sin. Glo Energ. 22 16

    [6]

    Dodds P E, Mcdowall W 2013 Energ. Policy 60 305Google Scholar

    [7]

    Briottet L, Batisse R, Dinechin A 2012 Int. J. Hydrogen Energy 37 9423Google Scholar

    [8]

    Nanninga N, Slifka A, Levy Y 2010 J. Res. Nat. Inst. Stand. Technol. 115 437Google Scholar

    [9]

    Kim C M, Kim Y P, Kim W S 2017 J. Mech. Sci. Technol. 31 3691Google Scholar

    [10]

    Zhao W, Min Y, Zhang T, Deng Q, Jiang W, Jiang W 2018 Corros. Sci. 133 251Google Scholar

    [11]

    Goikoetxea I, Juaristi J, Muino R D 2014 Phys. Rev. Lett. 113 066103Google Scholar

    [12]

    Jeon J, Yu B D, Hyun S 2016 J. Kor. Phy. Soc. 69 1776Google Scholar

    [13]

    Yang L, Shu D J, Li S C 2016 Phys. Chem. Chem. Phys. 18 14833

    [14]

    Huo C, Li Y W, Wang J G 2005 J. Phys. Chem. B 109 14160Google Scholar

    [15]

    Dan C S 2005 Catal. Today 105 44Google Scholar

    [16]

    Kunisada Y, Sakaguchi N 2015 J. Jap. Ins. Met. A 79 447Google Scholar

    [17]

    Amaya R S, Linares D H, Duarte H A 2016 J. Phys. Chem. C 120 10830

    [18]

    Huo C F, Liao X Y 2007 J. Phys. Chem. C 111 4305Google Scholar

    [19]

    Bernasek S L, Zappone M, Jiang P 1992 Surf. Sci. 272 53Google Scholar

    [20]

    Wang T, Tian X X, Yang Y, Li Y W, Wang J G, Beller M, Jiao H J 2016 Catal. Today 261 82Google Scholar

    [21]

    Huo C F, Ren J, Li Y W 2007 J. Catal. 249 174Google Scholar

    [22]

    Burke M L, Madix R J 1990 Surf. Sci. 237 20Google Scholar

    [23]

    Xie W, Peng L, Peng D 2014 Appl. Surf. Sci. 296 47Google Scholar

    [24]

    潘金生, 田民波 2011 材料科学基础 (北京: 清华大学出版社出版) 第156页

    Pan J S, Tian M B 2011 Fundamentals of Material Science (Beijing: Tsinghua University Press) p156 (in Chinese)

    [25]

    Clark S J, Segall M D, Pickard C J,Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567Google Scholar

    [26]

    张凤春, 李春福, 文平 2014 物理学报 63 197101Google Scholar

    Zhang F C, Li C F, Wen P 2014 Acta Phys. Sin. 63 197101Google Scholar

    [27]

    王明军, 李春福, 文平, 张凤春, 王垚, 刘恩佐 2016 物理学报 65 037101Google Scholar

    Wang M J, Li C F, Wen P, Zhang F C, Wang Y, Liu E Z 2016 Acta Phys. Sin. 65 037101Google Scholar

    [28]

    Chase M W 1998 NIST-JANAF Thermochemical Tables (4th Ed.) (New York: The American Institute of Physics for The National Institute of Standards and Technology) p641

    [29]

    Kuwabara A, Saito Y, Koyama Y 2008 Mater. Trans. 49 2484Google Scholar

    [30]

    陈运红 2005 硕士学位论文 (广州: 暨南大学)

    Chen Y H 2005 M. S. Thesis (Guangzhou: Ji'nan University) (in Chinese)

    [31]

    Jiang D E, Carter E A 2004 Surf. Sci. 570 167Google Scholar

    [32]

    Moon D W, Cameron S, Zaera F, Eberhardt W, Carr R, Bernasek L, Gland J L, Dwyer J 1987 Surf. Sci. 180 L123

    [33]

    Wang H, Nie X, Guo X, Song C S 2016 J. CO2 Uti. 15 107Google Scholar

    [34]

    Gholizadeh R, Yu Y X 2015 Appl. Surf. Sci. 357 1187Google Scholar

    [35]

    Staykov A, Yamabe J, Somerday B P 2014 Int. J. Quantum Chem. 114 626Google Scholar

  • 图 1  Fe(110)面及其对称点

    Fig. 1.  Fe(110) surface and high symmetry sites.

    图 2  CO, Fe(110)面及其top位吸附前后分波态密度图 (a)吸附前; (b)吸附后

    Fig. 2.  Projected local density of states from Fe on clean Fe surface and a CO molecular in vacuum (a) and with a CO adsorbed surface (b).

    图 3  H与Fe(110)面tf位吸附前后分波态密度图 (a)吸附前; (b)吸附后

    Fig. 3.  Projected local density of states from Fe on clean Fe surface and a H atom in vacuum (a) and with a H adsorbed surface (b).

    图 4  CO与H2吸附过程中的势能变化

    Fig. 4.  Potential energy variations of CO and H2 moving towards Fe(110).

    图 5  CO吸附能、H2吸附能和应变之间的关系

    Fig. 5.  Relationship between adsorption energy of CO and H2 and strain.

    图 6  H2和CO吸附能的差与应变之间的关系

    Fig. 6.  Relationship between strain and the difference of CO and H2 adsorption energy.

    图 7  CO的分压与θH之间的关系

    Fig. 7.  Relationship between CO pressure and coverage of H

    表 1  CO与H2在Fe(110)表面不同位置的吸附能(eV)

    Table 1.  Adsorption energies of CO and H2 on high symmetry sites of Fe(110).

    吸附物topsblbtf
    CO–1.89–1.64–1.82–1.83
    CO[31] (PBE)–1.88–1.63–1.80
    H2–0.47–0.82–1.04–1.33
    下载: 导出CSV
  • [1]

    Liu Z, Han H, Xiang C 2018 Energ. Policy 115 92Google Scholar

    [2]

    Gorji T B, Ranjbar A A, Mirzababaei S N 2015 Sol. Energy 119 332Google Scholar

    [3]

    Mahian O, Kianifar A, Kalogirou S A, Pop I, Wongwises S 2013 Int. J. Heat Mass Transfer 57 582Google Scholar

    [4]

    Sherif S A, Barbir F, Veziroglu T N 2005 Sol. Energy 78 647Google Scholar

    [5]

    舟丹 2017 中外能源 22 16

    Zhou D 2017 Sin. Glo Energ. 22 16

    [6]

    Dodds P E, Mcdowall W 2013 Energ. Policy 60 305Google Scholar

    [7]

    Briottet L, Batisse R, Dinechin A 2012 Int. J. Hydrogen Energy 37 9423Google Scholar

    [8]

    Nanninga N, Slifka A, Levy Y 2010 J. Res. Nat. Inst. Stand. Technol. 115 437Google Scholar

    [9]

    Kim C M, Kim Y P, Kim W S 2017 J. Mech. Sci. Technol. 31 3691Google Scholar

    [10]

    Zhao W, Min Y, Zhang T, Deng Q, Jiang W, Jiang W 2018 Corros. Sci. 133 251Google Scholar

    [11]

    Goikoetxea I, Juaristi J, Muino R D 2014 Phys. Rev. Lett. 113 066103Google Scholar

    [12]

    Jeon J, Yu B D, Hyun S 2016 J. Kor. Phy. Soc. 69 1776Google Scholar

    [13]

    Yang L, Shu D J, Li S C 2016 Phys. Chem. Chem. Phys. 18 14833

    [14]

    Huo C, Li Y W, Wang J G 2005 J. Phys. Chem. B 109 14160Google Scholar

    [15]

    Dan C S 2005 Catal. Today 105 44Google Scholar

    [16]

    Kunisada Y, Sakaguchi N 2015 J. Jap. Ins. Met. A 79 447Google Scholar

    [17]

    Amaya R S, Linares D H, Duarte H A 2016 J. Phys. Chem. C 120 10830

    [18]

    Huo C F, Liao X Y 2007 J. Phys. Chem. C 111 4305Google Scholar

    [19]

    Bernasek S L, Zappone M, Jiang P 1992 Surf. Sci. 272 53Google Scholar

    [20]

    Wang T, Tian X X, Yang Y, Li Y W, Wang J G, Beller M, Jiao H J 2016 Catal. Today 261 82Google Scholar

    [21]

    Huo C F, Ren J, Li Y W 2007 J. Catal. 249 174Google Scholar

    [22]

    Burke M L, Madix R J 1990 Surf. Sci. 237 20Google Scholar

    [23]

    Xie W, Peng L, Peng D 2014 Appl. Surf. Sci. 296 47Google Scholar

    [24]

    潘金生, 田民波 2011 材料科学基础 (北京: 清华大学出版社出版) 第156页

    Pan J S, Tian M B 2011 Fundamentals of Material Science (Beijing: Tsinghua University Press) p156 (in Chinese)

    [25]

    Clark S J, Segall M D, Pickard C J,Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567Google Scholar

    [26]

    张凤春, 李春福, 文平 2014 物理学报 63 197101Google Scholar

    Zhang F C, Li C F, Wen P 2014 Acta Phys. Sin. 63 197101Google Scholar

    [27]

    王明军, 李春福, 文平, 张凤春, 王垚, 刘恩佐 2016 物理学报 65 037101Google Scholar

    Wang M J, Li C F, Wen P, Zhang F C, Wang Y, Liu E Z 2016 Acta Phys. Sin. 65 037101Google Scholar

    [28]

    Chase M W 1998 NIST-JANAF Thermochemical Tables (4th Ed.) (New York: The American Institute of Physics for The National Institute of Standards and Technology) p641

    [29]

    Kuwabara A, Saito Y, Koyama Y 2008 Mater. Trans. 49 2484Google Scholar

    [30]

    陈运红 2005 硕士学位论文 (广州: 暨南大学)

    Chen Y H 2005 M. S. Thesis (Guangzhou: Ji'nan University) (in Chinese)

    [31]

    Jiang D E, Carter E A 2004 Surf. Sci. 570 167Google Scholar

    [32]

    Moon D W, Cameron S, Zaera F, Eberhardt W, Carr R, Bernasek L, Gland J L, Dwyer J 1987 Surf. Sci. 180 L123

    [33]

    Wang H, Nie X, Guo X, Song C S 2016 J. CO2 Uti. 15 107Google Scholar

    [34]

    Gholizadeh R, Yu Y X 2015 Appl. Surf. Sci. 357 1187Google Scholar

    [35]

    Staykov A, Yamabe J, Somerday B P 2014 Int. J. Quantum Chem. 114 626Google Scholar

  • [1] 赵有鹏, 刘晓勇, 刘辉, 房坤, 王佳, 罗先甫, 徐宁, 孙绪鲁, 刘煜, 高宇昊, 吴泽鹏, 李雪峰, 张欣耀. Ti-2.5Al-2Zr-1Fe在慢应变速率下的氢脆行为与机理研究. 物理学报, 2024, 73(21): 216103. doi: 10.7498/aps.73.20240896
    [2] 盛喆, 戴显英, 苗东铭, 吴淑静, 赵天龙, 郝跃. 各Li吸附组分下硅烯氢存储性能的第一性原理研究. 物理学报, 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [3] 徐紫巍, 石常帅, 赵光辉, 王明渊, 刘桂武, 乔冠军. 电化学析氢反应中单层MoSe2氢吸附机理第一性原理研究. 物理学报, 2018, 67(21): 217102. doi: 10.7498/aps.67.20180882
    [4] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(24): 246801. doi: 10.7498/aps.66.246801
    [5] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [6] 王小霞, 刘鑫, 张琼, 陈宏善. 吸附氢分子的振动态及熵的计算. 物理学报, 2017, 66(10): 103601. doi: 10.7498/aps.66.103601
    [7] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究. 物理学报, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [8] 刘秀英, 李晓凤, 于景新, 李晓东. Pd负载共价有机骨架COF-108上氢溢流机理的密度泛函理论研究. 物理学报, 2016, 65(15): 157302. doi: 10.7498/aps.65.157302
    [9] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附. 物理学报, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [10] 卢其亮, 罗其全, 陈莉莉. C@Al12团簇吸附H的密度泛函理论研究. 物理学报, 2010, 59(1): 234-238. doi: 10.7498/aps.59.234
    [11] 刘峰斌, 汪家道, 陈大融, 赵明, 何广平. 不同密度氢吸附金刚石(100)表面的微观结构. 物理学报, 2010, 59(9): 6556-6562. doi: 10.7498/aps.59.6556
    [12] 戴伟, 唐永建, 王朝阳, 孙卫国. 自制吸附仪储氢性能测试研究. 物理学报, 2009, 58(10): 7313-7316. doi: 10.7498/aps.58.7313
    [13] 宋红州, 张 平, 赵宪庚. Be(0001)薄膜中的量子尺寸效应与吸附氢的第一性原理计算. 物理学报, 2007, 56(1): 465-473. doi: 10.7498/aps.56.465
    [14] 宋红州, 张 平, 赵宪庚. 原子氢在Be(1010)薄膜上吸附的第一性原理计算. 物理学报, 2006, 55(11): 6025-6031. doi: 10.7498/aps.55.6025
    [15] 于 洋, 徐力方, 顾长志. 氢吸附金刚石(001)表面的第一性原理研究. 物理学报, 2004, 53(8): 2710-2714. doi: 10.7498/aps.53.2710
    [16] 胡晓明, 林彰达. 用低能电子衍射研究氢在Si(100)表面吸附引起的相变. 物理学报, 1996, 45(6): 985-989. doi: 10.7498/aps.45.985
    [17] 谢剑钧, 张涛, 路文昌. 氢在担载金属表面的吸附研究. 物理学报, 1993, 42(11): 1815-1821. doi: 10.7498/aps.42.1815
    [18] 侯晓远;杨曙;董国胜;丁训民;王迅. 用HREELS研究氢在GaAs和InP的(111),(III)表面上的吸附. 物理学报, 1987, 36(8): 1070-1074. doi: 10.7498/aps.36.1070
    [19] 胡际璜, 刘国辉, 王迅. Si(111)表面吸附氢会形成双氢化相吗?. 物理学报, 1986, 35(9): 1192-1198. doi: 10.7498/aps.35.1192
    [20] 金晓峰, 丰意青, 庄承群, 王迅. 用热脱附谱研究氢在Si(100)清洁表面的吸附. 物理学报, 1984, 33(6): 747-754. doi: 10.7498/aps.33.747
计量
  • 文章访问数:  11537
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-03
  • 修回日期:  2019-08-21
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回