搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti-2.5Al-2Zr-1Fe在慢应变速率下的氢脆行为与机理研究

赵有鹏 刘晓勇 刘辉 房坤 王佳 罗先甫 徐宁 孙绪鲁 刘煜 高宇昊 吴泽鹏 李雪峰 张欣耀

引用本文:
Citation:

Ti-2.5Al-2Zr-1Fe在慢应变速率下的氢脆行为与机理研究

赵有鹏, 刘晓勇, 刘辉, 房坤, 王佳, 罗先甫, 徐宁, 孙绪鲁, 刘煜, 高宇昊, 吴泽鹏, 李雪峰, 张欣耀

Study of hydrogen embrittlement behavior and mechanism of Ti-2.5Al-2Zr-1Fe by slow strain rate method

Zhao You-Peng, Liu Xiao-Yong, Liu Hui, Fang Kun, Wang Jia, Luo Xian-Fu, Xu Ning, Sun Xu-Lu, Liu Yu, Gao Yu-Hao, Wu Ze-Peng, Li Xue-Feng, Zhang Xin-Yao
PDF
导出引用
  • 本研究通过慢拉伸、恒位移等加载方法,评估了含氢Ti-2.5A1-2Zr-1Fe合金的力学性能衰减行为及氢脆敏感性的变化。利用扫描电子显微镜对断口微观形貌特征进行了分析,并采用二次离子质谱仪对氢的宏观分布进行了表征,揭示了断口脆性区域与氢宏观分布之间的内在联系。此外,我们结合位错载氢运动模型及扩散方程,探讨了氢的扩散机制以及慢应变速率对氢扩散过程产生的影响。为了进一步探索氢化物的存在性,我们利用透射电子显微镜对表面高氢浓度层和裂纹尖端及其附近物相进行了表征分析,最终未发现氢化物相的析出,综合上述实验数据和微观物相结构分析,我们对Ti-2.5Al-2Zr-1Fe合金的氢脆机制进行了探讨,认为该合金的氢脆机制由HEDE机制主导。
    The Ti-2.5Al-2Zr-1Fe used as hull structural material, is susceptible to hydrogen embrittlement induced by corrosion and hydrogen evolution in marine environments. Given the long-term service of ships, the hydrogen embrittlement behavior under slow strain rate is crucial for assessing the alloy's service performance and ensuring long-term ship structural safety. To investigate the hydrogen embrittlement mechanism of Ti-2.5Al-2Zr-1Fe alloy under slow strain rate conditions, this study integrated the use of slow tension and constant displacement loading techniques to systematically evaluate the attenuation of mechanical properties and the dynamic changes in hydrogen embrittlement sensitivity of hydrogen-containing Ti-2.5Al-2Zr-1Fe alloy.Employing Scanning Electron Microscopy (SEM), we conducted a thorough analysis of the microstructural features of fracture surfaces. Simultaneously, Secondary Ion Mass Spectrometry (SIMS) was utilized to elucidate the intimate correlation between the brittle zones at fracture sites and the macroscopic distribution of hydrogen. Additionally, theoretical analysis based on diffusion equations revealed a notable increase in hydrogen diffusion distance within the Ti-2.5Al-2Zr-1Fe alloy as hydrogen charging time increased.Further, leveraging the dislocation-hydrogen interaction model, we derived a critical strain rate threshold ε0 = [(30RT)/(ρDE)] for dislocation-mediated hydrogen transport in titanium alloys. When the externally applied strain rate ε falls below this threshold, dislocations efficiently capture and transport hydrogen atoms, enhancing hydrogen diffusion depth and significantly augmenting the alloy's hydrogen embrittlement sensitivity, thereby accelerating material embrittlement.Vickers Hardness (HV) testing further illuminated the dual nature of hydrogen's influence on titanium alloy properties: while moderate hydrogen content slightly enhances surface hardness, exceeding a specific threshold leads to a dominant negative impact on plasticity, vastly outweighing the benefits of surface hardening and resulting in a substantial decline in overall mechanical performance.To comprehensively decipher the hydrogen embrittlement mechanism of Ti-2.5Al-2Zr-1Fe alloy, Transmission Electron Microscopy (TEM) was employed to analyze the phase composition in regions of high hydrogen concentration, crack tips, and their vicinities. The analysis results indicate that no direct precipitation of hydrides was observed; instead, hydrogen preferentially accumulated in the β-phase, prompting microcrack propagation along β-phase boundaries.Based on the aforementioned experimental data and microstructural analysis, we propose that the hydrogen embrittlement mechanism in Ti-2.5Al-2Zr-1Fe alloy is primarily governed by the HEDE mechanism. Furthermore, when the strain rate falls below ε0, it synergizes with the dislocation-mediated hydrogen transport mechanism, vastly expanding the influence scope of the HEDE mechanism and exacerbating the alloy's hydrogen embrittlement sensitivity.
  • [1]

    Yang Y,Ma Y J,Lei J F 2021 Acta Metall. Sin. 57 1455 (in Chinese)[杨锐,马英杰,雷家峰2021金属学报 57 1455]

    [2]

    He Y,Zhou G,Liu Y X 2018 Acta. Phys. Sin. 67 23 (in Chinese)[何燕,周刚,刘艳侠 2018 物理学报, 67 23]

    [3]

    Wu M Y, Mi G B, Li P J 2024 Acta. Phys. Sin. 73 244 (in Chinese)[吴明宇,弭光宝,李培杰 2024 物理学报,73 244]

    [4]

    Ding Z S,Gao W,Wei J P 2022 Acta. Phys. Sin. 71 331(in Chinese)[丁智松,高巍,魏敬鹏 2022 物理学报 71 331]

    [5]

    Robertson I M,Sofronis P,Nagao A 2015 Metall. Mater. Trans. A 46 1085

    [6]

    Venezuela J,Zhou Q J,Liu Q L 2018 Mater. Today Commun. 17 1

    [7]

    Olden V, Thaulow C, Johnsen R. 2008 Mater. Des. 29 1934

    [8]

    Lynch S 2011 Strsee Corros.Cracking 30 90

    [9]

    Wang X,Zhu R T,Li C Y Rare 2020 Rare Met. Mater. Eng. 49 3769 (in Chinese)[王贤,朱荣涛,李超永. 2020,稀有金属材料与工程, 49 3769]

    [10]

    Zhang S Q, Wan J F, Zhao Q Y,2020 Corro. Sci 164 108345.

    [11]

    Xu Y L,Li L T 2021 Mater. Res. Express 8 046531

    [12]

    Wang Y,Wu B,Su Y J 2020 Nonferrous Met. Eng. 10 33 (in Chinese)[汪洋,吴冰,宿彦京 2020 有色金属工程 10 33 ]

    [13]

    Sun Z G,Hou H L 2008 J. Alloys Compd. 476 550

    [14]

    Liu X Y, Wang J, Gao L Q 2021 J. Alloys Compd. 862 158669.

    [15]

    Tien J, Thompson A W, Bernstein I M 1976 Metall. Trans. A 7 821

    [16]

    Wu M Y,Mi G B,Li P J 2023 Acta Phys. Sin. 72 198 (in Chinese)[吴明宇,弭光宝,李培杰 2023物理学报 72 198]

    [17]

    Zhou W,Yao Z K,Tan L J 2011 Rare Met. Mater. Eng. 40 1230 (in Chinese)[周伟,姚泽坤,谭立军 2011稀有金属材料与工程40 1230]

    [18]

    Zhao X L, Zhang Y J, Shao C W 2018 Acta Metall. Sin. 54 1031(in Chinese)[赵晓丽, 张永健, 邵成伟 2018 金属学报 54 1031]

    [19]

    Zhang B,Zheng H,Liu S 2005 At. Energy Sci. Technol. 39 522 (in Chinese)[张滨,郑华,刘实 2005 原子能科学技术 39 522]

    [20]

    Chen C Q,Li S X , Lu K 2003 Acta Mater. 51 931

    [21]

    Wang Y F,Gong J M,Jiang W C 2011 Acta Metall. Sin. 47 594 (in Chinese)[王艳飞,巩建鸣,蒋文春 金属学报 47 594]

    [22]

    Liu Z W 2009 J. G.Electron. Sci. Technol. 29 2(in Chinese)[刘战伟2009桂林电子科技大学学报 29 108]

    [23]

    Sun Z J,Wang Y 2020 Dev. Appl. Mater. 35 94(in Chinese) [孙志杰,王洋 2020 材料开发与应用35 94]

    [24]

    Liu X Z,Han E H,Song Y W 2023 Chin. J. of Nonferrous Met. 33 307 (in Chinese)[刘晓镇,韩恩厚,宋影伟2023中国有色金属学报33 307]

    [25]

    Wang X Y,Gao M,Sun L L,2004 Acta Phys. Sin.53 200 (in Chinese)[王秀英,高明,孙力玲 2004物理学报53 200 ]

    [26]

    Sun Y W,Chen J Z,Liu J 2015 Acta Metall. Sin. 51 1315(in Chinese)[孙永伟,陈继志,刘军,2015金属学报,51 1315]

    [27]

    Li G J,Sun G A,Gong J 2014 Acta Phys. Sin. 63 236101-1 (in Chinese) [李洪佳,孙光爱,龚建 2014 物理学报 63 236101-1]

    [28]

    Kan B,Wu W J,Yang Z X 2020 Mater.Sci.Eng 775 138963

    [29]

    Wang M Q,Akiyama E,Tsuzaki K 2007 Corros.Sci. 49 4081

    [30]

    Wang Z,Liu J,Zhang S Q 2022 J. Chin. Soc. Corros. Prot. 42 106(in Chinese) [王贞,刘静,张施琦 2022 中国腐蚀与防护学报42 106]

  • [1] 李欢, 叶小球, 唐俊, 敖冰云, 高涛. Li-Y-H三元氢化物的结构和稳定性研究. 物理学报, doi: 10.7498/aps.71.20210824
    [2] 李明, 金平实, 曹逊. 稀土含氧氢化物光致变色薄膜研究现状. 物理学报, doi: 10.7498/aps.7120221046
    [3] 李明, 金平实, 曹逊. 稀土含氧氢化物光致变色薄膜研究现状. 物理学报, doi: 10.7498/aps.71.20221046
    [4] 丁智松, 高巍, 魏敬鹏, 金耀华, 赵晨, 杨巍. TaC微粒对Ti-6Al-4V合金微弧氧化层结构和性能的影响. 物理学报, doi: 10.7498/aps.71.20210835
    [5] 丁智松, 高巍, 魏敬鹏, 金耀华, 赵晨, 杨巍. TaC 微粒对 Ti-6Al-4V 合金微弧氧化层结构和性能的影响. 物理学报, doi: 10.7498/aps.70.20210835
    [6] 梁贤烨, 弭光宝, 李培杰, 黄旭, 曹春晓. 钛合金高温摩擦着火理论研究. 物理学报, doi: 10.7498/aps.69.20200304
    [7] 李守英, 赵卫民, 乔建华, 王勇. CO与H2在应变Fe(110)表面的竞争吸附. 物理学报, doi: 10.7498/aps.68.20190660
    [8] 张李骊, 刘战辉, 修向前, 张荣, 谢自力. 氢化物气相外延生长高质量GaN膜生长参数优化研究. 物理学报, doi: 10.7498/aps.62.208101
    [9] 王晓璐, 令狐荣锋, 宋晓书, 吕兵, 杨向东. 氦原子与卤族氢化物分子相互作用势的研究. 物理学报, doi: 10.7498/aps.62.163101
    [10] 薛丽, 易林. Al掺杂对合金Mg1-xTix及其氢化物稳定性的影响. 物理学报, doi: 10.7498/aps.62.138801
    [11] 伍冬兰, 谢安东, 万慧军, 阮文. 聚合型硼氢化物(BH3)n(n=13)的几何结构与光谱的研究. 物理学报, doi: 10.7498/aps.60.103101
    [12] 唐元广, 吴汉华, 常鸿, 陈根余, 桑勇, 白亦真. 阴极电压脉冲占空比对钛合金微弧氧化膜特性的影响. 物理学报, doi: 10.7498/aps.58.4840
    [13] 杜晓明, 吴尔冬, 董宝中, 吴忠华, 苑学众. Ti-Mo合金氢化物微观缺陷的小角X射线散射研究. 物理学报, doi: 10.7498/aps.57.5782
    [14] 吴汉华, 龙北红, 龙北玉, 唐元广, 常 鸿, 白亦真. 钛合金微弧氧化过程中电学参量的特性研究. 物理学报, doi: 10.7498/aps.56.6537
    [15] 鲁光辉, 孙卫国, 冯 灏. 氢化物双原子分子势能曲线的能量自洽法研究. 物理学报, doi: 10.7498/aps.53.1753
    [16] 钟夏平, 邓 文, 唐郁生, 熊良钺, 王淑荷, 郭建亭, 龙期威. 合金元素韧化或脆化FeAl金属间化合物的微观机制. 物理学报, doi: 10.7498/aps.47.1734
    [17] 曹明中, 王福元, 汪根时, 宋德瑛, 陈桂英, 阮景辉. 金属氢化物LaNi4.5Mn0.5Hx的热中子非弹性散射谱. 物理学报, doi: 10.7498/aps.34.689
    [18] 杜家驹. 钛合金的六角密堆α相中微量氢所引起的内耗峰. 物理学报, doi: 10.7498/aps.31.801
    [19] 阮景辉, 成之绪, 陈桂英. 金属氢化物(AlH3)n的热中子非弹性散射谱. 物理学报, doi: 10.7498/aps.30.538
    [20] 王占一, 吴自勤. 铝铜合金的流变应力和形变速率的依赖关系. 物理学报, doi: 10.7498/aps.20.796
计量
  • 文章访问数:  149
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-27

/

返回文章
返回