搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti-2.5Al-2Zr-1Fe在慢应变速率下的氢脆行为与机理研究

赵有鹏 刘晓勇 刘辉 房坤 王佳 罗先甫 徐宁 孙绪鲁 刘煜 高宇昊 吴泽鹏 李雪峰 张欣耀

引用本文:
Citation:

Ti-2.5Al-2Zr-1Fe在慢应变速率下的氢脆行为与机理研究

赵有鹏, 刘晓勇, 刘辉, 房坤, 王佳, 罗先甫, 徐宁, 孙绪鲁, 刘煜, 高宇昊, 吴泽鹏, 李雪峰, 张欣耀
cstr: 32037.14.aps.73.20240896

Study of hydrogen embrittlement behavior and mechanism of Ti-2.5Al-2Zr-1Fe by slow strain rate method

Zhao You-Peng, Liu Xiao-Yong, Liu Hui, Fang Kun, Wang Jia, Luo Xian-Fu, Xu Ning, Sun Xu-Lu, Liu Yu, Gao Yu-Hao, Wu Ze-Peng, Li Xue-Feng, Zhang Xin-Yao
cstr: 32037.14.aps.73.20240896
PDF
HTML
导出引用
  • 通过慢拉伸、恒位移等加载方法, 评估了含氢Ti-2.5A1-2Zr-1Fe合金的力学性能衰减行为及氢脆敏感性的变化. 利用扫描电子显微镜对断口微观形貌特征进行了分析, 并采用二次离子质谱仪对氢的宏观分布进行了表征, 揭示了断口脆性区域与氢宏观分布之间的内在联系. 此外, 结合位错载氢运动模型及扩散方程, 探讨了氢的扩散机制以及慢应变速率对氢扩散过程产生的影响. 为了进一步探索氢化物的存在性, 利用透射电子显微镜对表面高氢浓度层和裂纹尖端及其附近物相进行了表征分析, 最终未发现氢化物相的析出, 综合上述实验数据和微观物相结构分析, 对Ti-2.5Al-2Zr-1Fe合金的氢脆机制进行了探讨, 认为该合金的氢脆机制由HEDE机制主导.
    The Ti-2.5Al-2Zr-1Fe used as hull structural material, is susceptible to hydrogen embrittlement induced by corrosion and hydrogen evolution in marine environments. Considering the long-term service of ships, the hydrogen embrittlement behavior under slow strain rate is crucial for evaluating the alloy’s service performance and ensuring long-term ship structural safety. In order to investigate the hydrogen embrittlement mechanism of Ti-2.5Al-2Zr-1Fe alloy under slow strain rate conditions, this study combines slow tension and constant displacement loading techniques to systematically evaluate the attenuation of mechanical properties and the dynamic changes in hydrogen embrittlement sensitivity of hydrogen-containing Ti-2.5Al-2Zr-1Fe alloy. Employing scanning electron microscopy (SEM), we thoroughly analyze the microstructural features of fracture surfaces. Meanwhile, the close correlation between the brittle zone at the fracture site and the macroscopic distribution of hydrogen atoms is elucidated by using secondary ion mass spectrometry (SIMS). Additionally, theoretical analysis based on diffusion equations reveals a notable increase in hydrogen diffusion distance within the Ti-2.5Al-2Zr-1Fe alloy as hydrogen charging time increases. Further, using the dislocation-hydrogen interaction model, we derive a critical strain rate threshold $ {\varepsilon _0} = {{\left( {30RT} \right)} {/ } {\left( {\rho DE} \right)}} $ for dislocation-mediated hydrogen transport in titanium alloys. When the externally applied strain rate ε falls below this threshold, dislocations efficiently capture and transport hydrogen atoms, enhancing hydrogen diffusion depth and significantly augmenting the alloy’s hydrogen embrittlement sensitivity, thereby accelerating material embrittlement. The Vickers-hardness (HV) test further elucidates the dual nature of hydrogen’s influence on titanium alloy properties: although moderate hydrogen content slightly enhances surface hardness, exceeding a specific threshold leads to a major negative influence on plasticity, far exceeding the benefits of surface hardening, resulting in a substantial decline in overall mechanical performance. To comprehensively decipher the hydrogen embrittlement mechanism of Ti-2.5Al-2Zr-1Fe alloy, transmission electron microscopy (TEM) is employed to analyze the phase composition in regions of high hydrogen concentration, crack tips, and their vicinities. The analysis results indicate that no direct precipitation of hydrides is observed; instead, hydrogen atoms preferentially accumulate in the β-phase, prompting microcrack propagation along β-phase boundaries. According to the aforementioned experimental data and microstructural analysis, we propose that the hydrogen embrittlement mechanism in Ti-2.5Al-2Zr-1Fe alloy is primarily governed by the HEDE mechanism. Furthermore, when the strain rate falls below ε0, it synergizes with the dislocation-mediated hydrogen transport mechanism, vastly expanding the influence scope of the HEDE mechanism and exacerbating the alloy’s hydrogen embrittlement sensitivity.
      通信作者: 刘晓勇, liuxiaoyongsjtu@163.com
    • 基金项目: 河洛青年人才托举工程项目(批准号: 2022HLTJZC04)资助的课题.
      Corresponding author: Liu Xiao-Yong, liuxiaoyongsjtu@163.com
    • Funds: Project supported by the Heluo Young Talents Supporting Project, China (Grant No. 2022HLTJZC04).
    [1]

    杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森 2021 金属学报 57 1455Google Scholar

    Yang R, Ma Y J, Lei J F, Hu Q M, Huang S S 2021 Acta Metall. Sin. 57 1455Google Scholar

    [2]

    何燕, 周刚, 刘艳侠, 王皞, 徐东生, 杨锐 2018 物理学报 67 050203Google Scholar

    He Y, Zhou G, Liu Y X, Wang H, Xu D S, Yang R 2018 Acta. Phys. Sin. 67 050203Google Scholar

    [3]

    吴明宇, 弭光宝, 李培杰 2024 物理学报 73 086103Google Scholar

    Wu M Y, Mi G B, Li P J 2024 Acta. Phys. Sin. 73 086103Google Scholar

    [4]

    丁智松, 高巍, 魏敬鹏, 金耀华, 赵晨, 杨巍 2022 物理学报 71 028102Google Scholar

    Ding Z S, Gao W, Wei J P, Jin Y H, Zhao C, Yang W 2022 Acta. Phys. Sin. 71 028102Google Scholar

    [5]

    Robertson I M, Sofronis P, Nagao A 2015 Metall. Mater. Trans. A 46 2323Google Scholar

    [6]

    Venezuela J, Zhou Q J, Liu Q L 2018 Mater. Today Commun. 17 1Google Scholar

    [7]

    Olden V, Thaulow C, Johnsen R 2008 Mater. Des. 29 1934Google Scholar

    [8]

    Lynch S P 2007 NACE International Corrosion Conference Nashville, Tennessee, March, 2007 p07493

    [9]

    Wang X, Zhu R T, Li C Y, Wang X, Huang P F 2020 Rare Met. Mater. Eng. 49 3769

    [10]

    Zhang S Q, Wan J F, Zhao Q Y 2020 Corros. Sci 164 108345Google Scholar

    [11]

    Xu Y L, Li L T 2021 Mater. Res. Express 8 046531Google Scholar

    [12]

    汪洋, 吴冰, 宿彦京, 邢焰, 王向轲, 高鸿, 李岩 2020 有色金属工程 10 33Google Scholar

    Wang Y, Wu B, Su Y J, Xing Y, Wang X K, Gao H, Li Y 2020 Nonferrous Met. Eng. 10 33Google Scholar

    [13]

    Sun Z G, Hou H L 2008 J. Alloys Compd. 476 550Google Scholar

    [14]

    Liu X Y, Wang J, Gao L Q 2021 J. Alloys Compd. 862 158669Google Scholar

    [15]

    Tien J, Thompson A W, Bernstein I M 1976 Metall. Trans. A 7 821Google Scholar

    [16]

    吴明宇, 弭光宝, 李培杰, 黄旭 2023 物理学报 72 166102Google Scholar

    Wu M Y, Mi G B, Li P J, Huang X 2023 Acta Phys. Sin. 72 166102Google Scholar

    [17]

    周伟, 姚泽坤, 谭立军, 郭鸿镇, 张建伟, 梁晓波 2011 稀有金属材料与工程 40 1230

    Zhou W, Yao Z K, Tan L J, Guo H Z, Zhang J W, Liang X B 2011 Rare Met. Mater. Eng. 40 1230

    [18]

    赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚 2018 金属学报 54 1031Google Scholar

    Zhao X L, Zhang Y J, Shao C W, Hui W J, Dong H 2018 Acta Metall. Sin. 54 1031Google Scholar

    [19]

    张滨, 郑华, 刘实, 王隆保 2005 原子能科学技术 39 522Google Scholar

    Zhang B, Zheng H, Liu S, Wang L B 2005 At. Energy Sci. Technol. 39 522Google Scholar

    [20]

    Chen C Q, Li S X, Lu K 2003 Acta Mater. 51 931Google Scholar

    [21]

    王艳飞, 巩建鸣, 蒋文春, 姜勇, 唐建群 2011 金属学报 47 594

    Wang Y F, Gong J M, Jiang W C, Jiang Y, Tang J Q 2011 Acta Metall. Sin. 47 594

    [22]

    刘战伟 2009 桂林电子科技大学学报 29 108Google Scholar

    Liu Z W 2009 J. Guilin Univ. Electron. Technol. 29 108Google Scholar

    [23]

    孙志杰, 王洋 2020 材料开发与应用 35 94

    Sun Z J, Wang Y 2020 Dev. Appl. Mater. 35 94

    [24]

    刘晓镇, 韩恩厚, 宋影伟 2023 中国有色金属学报 33 307Google Scholar

    Liu X Z, Han E H, Song Y W 2023 Chin. J. Nonferrous Met. 33 307Google Scholar

    [25]

    王秀英, 孙力玲, 刘日平, 姚玉书, 张君, 王文魁 2004 物理学报 53 3845Google Scholar

    Wang X Y, Sun L L, Liu R P, Yao Y S, Zhang J, Wang W K 2004 Acta Phys. Sin. 53 3845Google Scholar

    [26]

    孙永伟, 陈继志, 刘军 2015 金属学报 51 1315

    Sun Y W, Chen J Z, Liu J 2015 Acta Metall. Sin. 51 1315

    [27]

    李洪佳, 孙光爱, 龚建, 陈波, 王虹, 李建, 庞蓓蓓, 张莹, 彭述明 2014 物理学报 63 236101Google Scholar

    Li H J, Sun G A, Gong J, Chen B, Wang H, Li J, Pang B B, Zhang Y, Peng S M 2014 Acta Phys. Sin. 63 236101Google Scholar

    [28]

    Kan B, Wu W J, Yang Z X, Li J X 2020 Mater. Sci. Eng. A 775 138963Google Scholar

    [29]

    Wang M Q, Akiyama E, Tsuzaki K 2007 Corros. Sci. 49 4081Google Scholar

    [30]

    王贞, 刘静, 张施琦, 黄峰 2022 中国腐蚀与防护学报 42 106Google Scholar

    Wang Z, Liu J, Zhang S Q, Huang F 2022 J. Chin. Soc. Corros. Prot. 42 106Google Scholar

  • 图 1  Ti-2.5Al-2Zr-1Fe微观组织图

    Fig. 1.  Microstructures of the Ti-2.5Al-2Zr-1Fe plate used in this work.

    图 2  圆棒拉伸试样尺寸(单位为 mm)

    Fig. 2.  Dimensions of tensile specimen used in this work (unit: mm).

    图 3  WOL试样尺寸图(单位为 mm)

    Fig. 3.  Dimensions of WOL sample used in this work (unit: mm).

    图 4  聚焦离子束(FIB)制取TEM试样过程示意图

    Fig. 4.  Process of preparing TEM samples by focused ion beam (FIB) used in this work.

    图 5  取测氢试样的取样示意图

    Fig. 5.  Schematic diagram of the sampling of H content test

    图 6  不同充氢时间下的拉伸曲线 (a) 常规拉伸; (b) 慢应变拉伸

    Fig. 6.  Tensile stress-strain curves of the differently charged samples: (a) Conventional tensile test; (b) slow strain tensile test

    图 7  两种应变速率下性能变化 (a) 断面收缩率; (b) 延伸率; (c) 抗拉强度

    Fig. 7.  Variation curves of mechanical properties of samples at different strain rates: (a) Reduction of area; (b) percentage elongation; (c) tensile strength.

    图 8  两种应变速率下的氢脆敏感性变化

    Fig. 8.  Variation curves of hydrogen embrittlement sensitivity at different strain rates.

    图 9  常规拉伸试样断口的宏观和微观形貌图 (a), (b), (c) 0 h常规拉伸试样; (d), (e), (f) 8 h常规拉伸试样

    Fig. 9.  Macroscopic and microscopic morphology of fracture surface in the conventional tensile test: (a), (b), (c) The 0 h conventional tensile sample; (d), (e), (f) the 8 h conventional tensile sample.

    图 10  慢拉伸试样断口的宏观和微观形貌图 (a), (b), (c) 0 h慢拉伸试样; (d), (e), (f) 8 h慢拉伸试样

    Fig. 10.  Macroscopic and microscopic morphology of fracture surface in the slow tensile test: (a), (b), (c) The 0 h slow tensile sample; (d), (e), (f) the 8 h slow tensile sample.

    图 11  不同充氢时间下试样断口的宏观形貌图 (a)—(d) 24—264 h的常规拉伸试样; (e)—(h) 24—264 h的慢拉伸试样

    Fig. 11.  Macroscopic morphology of the fracture surface of the differently charged samples: (a)–(d) The conventional tensile samples are 24–264 h; (e)–(h) the slow tensile samples are 24–264 h.

    图 12  试样表面硬度随充氢时间的变化

    Fig. 12.  Variation of surface hardness of specimen with charging time.

    图 13  二次离子质谱分析结果 (a)氘的分布; (b)铝的分布

    Fig. 13.  The SIMS analysis results of Ti-2.5A1-2Zr-1Fe alloy: (a) Distribution of deuterium; (b) distribution of aluminum.

    图 14  不同温度下氢分布情况

    Fig. 14.  Distribution of hydrogen at different temperatures.

    图 15  充氢48 h WOL试样的断口宏观形貌

    Fig. 15.  Macro-morphology of fracture surface of WOL sample in constant displacement experiment after pre-cracking after 48 hours of charging.

    图 16  (a) 充氢48 h WOL试样断口TEM形貌; (b) A区域的SAED图样; (c) B区域的SAED图样

    Fig. 16.  (a) The TEM morphology of fracture surface of WOL sample charged with hydrogen for 48 h; (b) the SAED pattern in area A; (c) the SAED pattern in area B.

    图 17  Ti-2.5Al-2Zr-1Fe合金不同充氢时间下氢扩散深度理论值

    Fig. 17.  Theoretical values of hydrogen diffusion depth of Ti-2.5A1-2Zr-1Fe alloy at different charging time.

    图 18  载氢位错与相界交互行为及其机制示意图

    Fig. 18.  Schematic Diagram of the interaction behavior and mechanism between hydrogen-loaded dislocations and phase boundaries.

    表 1  二次离子质谱测试参数

    Table 1.  Parameters of SIMS testing.

    入射能量/keV 入射角/(°) 电流强度/pA 扫描面积/m2 极性及质量范围/amu
    30 45 1.142 500×500 负离子模式 0—227
    下载: 导出CSV
  • [1]

    杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森 2021 金属学报 57 1455Google Scholar

    Yang R, Ma Y J, Lei J F, Hu Q M, Huang S S 2021 Acta Metall. Sin. 57 1455Google Scholar

    [2]

    何燕, 周刚, 刘艳侠, 王皞, 徐东生, 杨锐 2018 物理学报 67 050203Google Scholar

    He Y, Zhou G, Liu Y X, Wang H, Xu D S, Yang R 2018 Acta. Phys. Sin. 67 050203Google Scholar

    [3]

    吴明宇, 弭光宝, 李培杰 2024 物理学报 73 086103Google Scholar

    Wu M Y, Mi G B, Li P J 2024 Acta. Phys. Sin. 73 086103Google Scholar

    [4]

    丁智松, 高巍, 魏敬鹏, 金耀华, 赵晨, 杨巍 2022 物理学报 71 028102Google Scholar

    Ding Z S, Gao W, Wei J P, Jin Y H, Zhao C, Yang W 2022 Acta. Phys. Sin. 71 028102Google Scholar

    [5]

    Robertson I M, Sofronis P, Nagao A 2015 Metall. Mater. Trans. A 46 2323Google Scholar

    [6]

    Venezuela J, Zhou Q J, Liu Q L 2018 Mater. Today Commun. 17 1Google Scholar

    [7]

    Olden V, Thaulow C, Johnsen R 2008 Mater. Des. 29 1934Google Scholar

    [8]

    Lynch S P 2007 NACE International Corrosion Conference Nashville, Tennessee, March, 2007 p07493

    [9]

    Wang X, Zhu R T, Li C Y, Wang X, Huang P F 2020 Rare Met. Mater. Eng. 49 3769

    [10]

    Zhang S Q, Wan J F, Zhao Q Y 2020 Corros. Sci 164 108345Google Scholar

    [11]

    Xu Y L, Li L T 2021 Mater. Res. Express 8 046531Google Scholar

    [12]

    汪洋, 吴冰, 宿彦京, 邢焰, 王向轲, 高鸿, 李岩 2020 有色金属工程 10 33Google Scholar

    Wang Y, Wu B, Su Y J, Xing Y, Wang X K, Gao H, Li Y 2020 Nonferrous Met. Eng. 10 33Google Scholar

    [13]

    Sun Z G, Hou H L 2008 J. Alloys Compd. 476 550Google Scholar

    [14]

    Liu X Y, Wang J, Gao L Q 2021 J. Alloys Compd. 862 158669Google Scholar

    [15]

    Tien J, Thompson A W, Bernstein I M 1976 Metall. Trans. A 7 821Google Scholar

    [16]

    吴明宇, 弭光宝, 李培杰, 黄旭 2023 物理学报 72 166102Google Scholar

    Wu M Y, Mi G B, Li P J, Huang X 2023 Acta Phys. Sin. 72 166102Google Scholar

    [17]

    周伟, 姚泽坤, 谭立军, 郭鸿镇, 张建伟, 梁晓波 2011 稀有金属材料与工程 40 1230

    Zhou W, Yao Z K, Tan L J, Guo H Z, Zhang J W, Liang X B 2011 Rare Met. Mater. Eng. 40 1230

    [18]

    赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚 2018 金属学报 54 1031Google Scholar

    Zhao X L, Zhang Y J, Shao C W, Hui W J, Dong H 2018 Acta Metall. Sin. 54 1031Google Scholar

    [19]

    张滨, 郑华, 刘实, 王隆保 2005 原子能科学技术 39 522Google Scholar

    Zhang B, Zheng H, Liu S, Wang L B 2005 At. Energy Sci. Technol. 39 522Google Scholar

    [20]

    Chen C Q, Li S X, Lu K 2003 Acta Mater. 51 931Google Scholar

    [21]

    王艳飞, 巩建鸣, 蒋文春, 姜勇, 唐建群 2011 金属学报 47 594

    Wang Y F, Gong J M, Jiang W C, Jiang Y, Tang J Q 2011 Acta Metall. Sin. 47 594

    [22]

    刘战伟 2009 桂林电子科技大学学报 29 108Google Scholar

    Liu Z W 2009 J. Guilin Univ. Electron. Technol. 29 108Google Scholar

    [23]

    孙志杰, 王洋 2020 材料开发与应用 35 94

    Sun Z J, Wang Y 2020 Dev. Appl. Mater. 35 94

    [24]

    刘晓镇, 韩恩厚, 宋影伟 2023 中国有色金属学报 33 307Google Scholar

    Liu X Z, Han E H, Song Y W 2023 Chin. J. Nonferrous Met. 33 307Google Scholar

    [25]

    王秀英, 孙力玲, 刘日平, 姚玉书, 张君, 王文魁 2004 物理学报 53 3845Google Scholar

    Wang X Y, Sun L L, Liu R P, Yao Y S, Zhang J, Wang W K 2004 Acta Phys. Sin. 53 3845Google Scholar

    [26]

    孙永伟, 陈继志, 刘军 2015 金属学报 51 1315

    Sun Y W, Chen J Z, Liu J 2015 Acta Metall. Sin. 51 1315

    [27]

    李洪佳, 孙光爱, 龚建, 陈波, 王虹, 李建, 庞蓓蓓, 张莹, 彭述明 2014 物理学报 63 236101Google Scholar

    Li H J, Sun G A, Gong J, Chen B, Wang H, Li J, Pang B B, Zhang Y, Peng S M 2014 Acta Phys. Sin. 63 236101Google Scholar

    [28]

    Kan B, Wu W J, Yang Z X, Li J X 2020 Mater. Sci. Eng. A 775 138963Google Scholar

    [29]

    Wang M Q, Akiyama E, Tsuzaki K 2007 Corros. Sci. 49 4081Google Scholar

    [30]

    王贞, 刘静, 张施琦, 黄峰 2022 中国腐蚀与防护学报 42 106Google Scholar

    Wang Z, Liu J, Zhang S Q, Huang F 2022 J. Chin. Soc. Corros. Prot. 42 106Google Scholar

  • [1] 李欢, 叶小球, 唐俊, 敖冰云, 高涛. Li-Y-H三元氢化物的结构和稳定性研究. 物理学报, 2022, 71(1): 017401. doi: 10.7498/aps.71.20210824
    [2] 李明, 金平实, 曹逊. 稀土含氧氢化物光致变色薄膜研究现状. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221046
    [3] 李明, 金平实, 曹逊. 稀土含氧氢化物光致变色薄膜研究现状. 物理学报, 2022, 71(21): 218101. doi: 10.7498/aps.71.20221046
    [4] 丁智松, 高巍, 魏敬鹏, 金耀华, 赵晨, 杨巍. TaC微粒对Ti-6Al-4V合金微弧氧化层结构和性能的影响. 物理学报, 2022, 71(2): 028102. doi: 10.7498/aps.71.20210835
    [5] 丁智松, 高巍, 魏敬鹏, 金耀华, 赵晨, 杨巍. TaC 微粒对 Ti-6Al-4V 合金微弧氧化层结构和性能的影响. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210835
    [6] 梁贤烨, 弭光宝, 李培杰, 黄旭, 曹春晓. 钛合金高温摩擦着火理论研究. 物理学报, 2020, 69(21): 216101. doi: 10.7498/aps.69.20200304
    [7] 李守英, 赵卫民, 乔建华, 王勇. CO与H2在应变Fe(110)表面的竞争吸附. 物理学报, 2019, 68(21): 217103. doi: 10.7498/aps.68.20190660
    [8] 张李骊, 刘战辉, 修向前, 张荣, 谢自力. 氢化物气相外延生长高质量GaN膜生长参数优化研究. 物理学报, 2013, 62(20): 208101. doi: 10.7498/aps.62.208101
    [9] 王晓璐, 令狐荣锋, 宋晓书, 吕兵, 杨向东. 氦原子与卤族氢化物分子相互作用势的研究. 物理学报, 2013, 62(16): 163101. doi: 10.7498/aps.62.163101
    [10] 薛丽, 易林. Al掺杂对合金Mg1-xTix及其氢化物稳定性的影响. 物理学报, 2013, 62(13): 138801. doi: 10.7498/aps.62.138801
    [11] 伍冬兰, 谢安东, 万慧军, 阮文. 聚合型硼氢化物(BH3)n(n=13)的几何结构与光谱的研究. 物理学报, 2011, 60(10): 103101. doi: 10.7498/aps.60.103101
    [12] 唐元广, 吴汉华, 常鸿, 陈根余, 桑勇, 白亦真. 阴极电压脉冲占空比对钛合金微弧氧化膜特性的影响. 物理学报, 2009, 58(7): 4840-4845. doi: 10.7498/aps.58.4840
    [13] 杜晓明, 吴尔冬, 董宝中, 吴忠华, 苑学众. Ti-Mo合金氢化物微观缺陷的小角X射线散射研究. 物理学报, 2008, 57(9): 5782-5787. doi: 10.7498/aps.57.5782
    [14] 吴汉华, 龙北红, 龙北玉, 唐元广, 常 鸿, 白亦真. 钛合金微弧氧化过程中电学参量的特性研究. 物理学报, 2007, 56(11): 6537-6542. doi: 10.7498/aps.56.6537
    [15] 鲁光辉, 孙卫国, 冯 灏. 氢化物双原子分子势能曲线的能量自洽法研究. 物理学报, 2004, 53(6): 1753-1758. doi: 10.7498/aps.53.1753
    [16] 钟夏平, 邓 文, 唐郁生, 熊良钺, 王淑荷, 郭建亭, 龙期威. 合金元素韧化或脆化FeAl金属间化合物的微观机制. 物理学报, 1998, 47(10): 1734-1740. doi: 10.7498/aps.47.1734
    [17] 曹明中, 王福元, 汪根时, 宋德瑛, 陈桂英, 阮景辉. 金属氢化物LaNi4.5Mn0.5Hx的热中子非弹性散射谱. 物理学报, 1985, 34(5): 689-693. doi: 10.7498/aps.34.689
    [18] 杜家驹. 钛合金的六角密堆α相中微量氢所引起的内耗峰. 物理学报, 1982, 31(6): 801-806. doi: 10.7498/aps.31.801
    [19] 阮景辉, 成之绪, 陈桂英. 金属氢化物(AlH3)n的热中子非弹性散射谱. 物理学报, 1981, 30(4): 538-541. doi: 10.7498/aps.30.538
    [20] 王占一, 吴自勤. 铝铜合金的流变应力和形变速率的依赖关系. 物理学报, 1964, 20(8): 796-805. doi: 10.7498/aps.20.796
计量
  • 文章访问数:  956
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-28
  • 修回日期:  2024-09-08
  • 上网日期:  2024-09-27
  • 刊出日期:  2024-11-05

/

返回文章
返回