搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

600 ℃高温钛合金燃烧组织演变及机理

吴明宇 弭光宝 李培杰 黄旭

引用本文:
Citation:

600 ℃高温钛合金燃烧组织演变及机理

吴明宇, 弭光宝, 李培杰, 黄旭

Evolution and mechanism of combustion microstructure of 600 ℃ high temperature titanium alloy

Wu Ming-Yu, Mi Guang-Bao, Li Pei-Jie, Huang Xu
PDF
HTML
导出引用
  • 采用摩擦氧浓度法测定600 ℃高温钛合金的阻燃性能, 通过聚焦离子束技术和高分辨电子显微镜对燃烧组织的燃烧区、熔凝区和热影响区内不同价态的氧化产物进行表征与界面结构分析, 发现燃烧产物Al2O3, Ti2O3以及TiO2具有不同于氧化过程的形成方式; 结合自由能和蒸气压计算, 揭示燃烧组织演变的机理及其对合金阻燃性能的影响. 结果表明, 合金中6%的Al元素含量导致熔凝区/热影响区界面不能形成连续性Al2O3保护层; 1800 K左右TiO蒸气压的显著增加造成熔凝区形成Ti2O3和Ti构成的疏松结构, 为氧的快速内扩散提供路径; 此外, 燃烧区中形成的TiO2熔体对基体不具有保护作用. 因此, 600 ℃高温钛合金不具备良好的阻燃性能.
    Oxides formed in the combustion process significantly affect the flame retardancy of titanium alloys, however, the evolution mechanism and formation mechanism of the combustion products of 600 ℃ high temperature titanium alloy remain uncertain. Frictional ignition method is employed in this paper to study the combustion behaviors of 600 ℃ high temperature titanium alloy, and the flame retardancy is evaluated according to the friction time, oxygen content and combustion state. In-situ observation of the burning phenomenon at the friction position and morphology after combustion is investigated, and the combustion states can be divided into oxidation stage, ignition stage and extended combustion stage. Further microstructure analysis is conducted subsequently by focus ion beam (FIB) and high resolution transmission electron microscope (HRTEM) to characterize the oxidation products with different valences in different zones of combustion microstructure. Al2O3, Ti2O3 and TiO2 are observed as the main combustion products in the heat-affected zone, melting zone and combustion zone, respectively. Notably, TiO2 is found to be formed by Ti2O3 under the combustion condition, which is different from the TiO2 transformed from the TiO mesophase under oxidation condition. This results in a lax structure composed of spherical Ti2O3 particles and porous Ti matrix in the melting zone. Thermodynamic calculations including Gibbs free energy and decomposition pressure are discussed to explain the evolution mechanisms and formation mechanisms of different oxides. It is revealed that an Al content of 6% is insufficient to form a continuous protective Al2O3 layer at the interface of the melting zone and heat affected zone. The difference in reaction path between TiO2 formed by TiO and by Ti2O3 can be ascribed to the formation of gaseous TiO phase. The sharp increase of TiO vapor pressure at about 1800 K reduces the stability of titanium oxide, thus causing the as-formed TiO to evaporate rapidly and forcing titanium to transform into TiO2 via a more stable phase, Ti2O3. The formation of the porous structure composed of Ti2O3 and Ti at the melting zone provides a path for the rapid internal diffusion of oxygen, which severely deteriorates the oxygen prevention capability of as-formed oxide layers. Besides, the TiO2 synthesized from Ti-O melt in the combustion zone can hardly protect the inner structure. Therefore, the flame retardancy of 600 ℃ high-temperature titanium alloy is far from satisfactory.
      通信作者: 弭光宝, guangbao.mi@biam.ac.cn
    • 基金项目: 国家自然科学基金“叶企孙”科学基金(批准号: U2141222)和国家科技重大专项(批准号: J2019-VIII-0003-0165)资助的课题.
      Corresponding author: Mi Guang-Bao, guangbao.mi@biam.ac.cn
    • Funds: Project supported by the “Ye Qisun” Science Fund Project of National Natural Science Foundation of China (Grant No. U2141222) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. J2019-VIII-0003-0165).
    [1]

    Peters M, Kumpfert J, Ward C H, Leyens C 2003 Adv. Eng. Mater. 5 419Google Scholar

    [2]

    蔡建明, 弭光宝, 高帆, 黄浩, 曹京霞, 黄旭, 曹春晓 2016 材料工程 44 1

    Cai J M, Mi G B, Gao F, Huang H, Cao J X, Huang X, Cao C X 2016 J. Mater. Eng. 44 1

    [3]

    Leyens C, Kocian K, Hausmann J, Kaysser W A 2003 Aerosp. Sci. Tech. 7 201Google Scholar

    [4]

    Wolf J S, Moyle D D, Pruitt A B, Bader J H 1976 J. Electrochem. Soc. 123 C251

    [5]

    Joel S, Nathan J, Timothy G 2012 J. Astm. Int. 35 736Google Scholar

    [6]

    Shafirovich E, Teoh S K, Varma A 2008 Combust. Flame 152 262Google Scholar

    [7]

    Li X L, Hillel R, Teyssandier F, Chou S J 1992 Acta Metall. 40 3149Google Scholar

    [8]

    Wagner S, Arpshofen I, Seifert H J The Binary System Ti-O MSIT [2023-3-10]

    [9]

    Leyens C, Peters M, Kaysser W A 1996 Mater. Sci. Tech. 15 1326Google Scholar

    [10]

    Qu S J, Tang S Q, Feng A H, Feng C, Shen J, Chen D L 2018 Acta Mater. 148 300Google Scholar

    [11]

    Jiang B B, Wen D H, Wang Q, Che J D, Dong C, Liao P K, Xu F, Sun L X 2019 J. Mater. Sci. Techol. 35 1008Google Scholar

    [12]

    Luthra K L 1991 Oxid. Met. 36 274Google Scholar

    [13]

    Wu H H, Trinkle D R 2011 Phys. Rev. Lett. 107 045504Google Scholar

    [14]

    弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓 2016 物理学报 65 056103Google Scholar

    Mi G B, Huang X, Cao J X, Wang B, Cao C X 2016 Acta Phys. Sin. 65 056103Google Scholar

    [15]

    Kofstad P 1967 J. L. Com. Met. 12 449Google Scholar

    [16]

    Shang S L, Fang H Z, Wang J 2014 Corros. Sci. 83 94Google Scholar

    [17]

    Muravyev N V, Monogarov K A, Zhigach A N, Leipunsky U O, Fomenkov I V, Pivkina A N 2018 Combust. Flame 191 109Google Scholar

    [18]

    Millogo M, Bernard S, Gillard P, Frascati F 2018 J. Loss Prev. Process Ind. 56 254Google Scholar

    [19]

    Derevyaga M E, Fedorin L 1976 Combust. Explo. Shock 12 493

    [20]

    Zhao Y Q, Zhou L, Deng J 1999 Rare Metal. Mat. Eng. 28 77

    [21]

    Rahmel A, Spencer P J 1990 Oxid. Metal 35 53Google Scholar

    [22]

    Zhang M, Hsieh K, Dekock J, Chang Y A 1992 Scripta Metal. Mater. 27 1361Google Scholar

    [23]

    Li R, Zhang P, Li X, Zhang C, Zhao J J 2013 J. Nucl. Mater. 435 71Google Scholar

    [24]

    Liu Z, Welsch G 1988 Metal. Trans. 19 1121Google Scholar

    [25]

    Scotti L, Mottura A 2016 J. Chem. Phys. 144 84701Google Scholar

    [26]

    Perez R A, Nakajima H, Dyment F 2003 Mater. Trans. 44 2Google Scholar

    [27]

    Shao L, Xie G L, Liu X H, et al. 2022 Corros. Sci. 194 109957Google Scholar

    [28]

    Mi G B, Huang X, Li P J, Cao J X, Huang X, Cao C X 2012 T. Nonferr. Metal. Soc. 22 2409Google Scholar

    [29]

    梁贤烨, 弭光宝, 李培杰, 黄旭, 曹春晓 2020 物理学报 69 216101Google Scholar

    Liang X Y, Mi G B, Li P J, Huang X, Cao C X 2020 Acta Phys. Sin. 69 216101Google Scholar

    [30]

    Ouyang P X, Mi G B, Cao J X, Huang X, He L J, Li P J 2018 Mater. Today Commun. 16 364Google Scholar

    [31]

    Shao L, Li Z B, Yu J B, Yang G, Zhang C, Zou Y, Huang J F 2021 Corros. Sci. 192 109868Google Scholar

    [32]

    Shao L, Xie G L, Liu X H, Wu Y, Yu J B, Feng K, Xue W L 2021 Corros. Sci. 190 109641Google Scholar

    [33]

    Zhao Y Q, Zhou L, Zhu K Y, Qu H L, Wu H 2001 J. Mater. Sci. Tech. 17 677

    [34]

    Zhao Y Q, Zhou L A, Deng J 1999 Mater. Sci. Eng. A 267 167Google Scholar

    [35]

    胡庚祥, 蔡珣, 戎咏华 2010 材料科学基础 (第3版) (上海: 上海交通大学出版社) 第392—397页

    Hu G X, Cai X, Rong Y H 2010 Fundamentals of Materials Science (3rd Ed.) (Shanghai: Shanghai Jiao Tong University Press) pp392–397 (in Chinese)

    [36]

    Fischer F D, Bohm H J, Oberaigner E R, Waitz T 2006 Acta Mater. 54 151Google Scholar

    [37]

    Fischer F D, Svoboda J, Petryk H 2014 Acta Mater. 67 1Google Scholar

    [38]

    Fischer F D, Svoboda J, Antretter T, Kozeschnik E 2015 Int. J. Plast. 64 164Google Scholar

    [39]

    Bohm H J, Zickler G A, Fischer F D, Svoboda J 2021 Mech. Mater. 155 103781Google Scholar

    [40]

    Dehm G, Scheu C, Rühle M, Raj R 1998 Acta Mater. 46 759Google Scholar

    [41]

    Taniguchi S, Shibata T, Katoh J N 1991 Mater. Trans. 32 151Google Scholar

    [42]

    Wallace T A, Clark R K, Wiedemann K E, Sankaran S N 1992 Oxid. Met. 37 111Google Scholar

    [43]

    Shimizu T, Ikubo T, Isobe S 1992 Mater. Sci. Eng. A 153 602Google Scholar

    [44]

    Tang S L, Li Y F, Wang Y R, Gao Y M, Zheng Q L, Yi D W 2018 Mater. Chem. Phys. 213 538Google Scholar

    [45]

    巴伦I 著 (程乃良 译) 2003 纯物质热化学数据手册 (北京: 科学出版社) 第1672—1698页

    Brain I (translated by Cheng N L) 2003 Thermalchemical Data of Pure Substances (Beijing: Science Press) pp1672–1698 (in Chinese)

    [46]

    Groves W O, Hoch M, Johnston H L 1955 J. Phys. Chem. 55 127

    [47]

    Heideman S A, Reed T B, Gilles P W 1980 High Temp. Sci. 12 79

    [48]

    Waldner P, Eriksson G 1999 Calphad 23 189Google Scholar

  • 图 1  TA29合金不同燃烧阶段的原位观察 (a), (b) 未燃烧TA29合金的升温(a)及冷却(b)状态; (c)—(e) 临界燃烧TA29合金的升温(c), 起燃(d)及冷却(e)阶段; (f)—(j) 充分燃烧TA29合金的升温(f), 起燃(g), 熔化(h), 燃烧(i)扩展和冷却(j)阶段

    Fig. 1.  In-situ observation of TA29 alloy at different ignition stages: (a), (b) Temperature rise (a) and cooling (b) stages of TA29 alloy without ignition; (c)–(e) temperature rise (c), ignition (d) and cooling (e) stages of TA29 alloy with critical ignition; (f)–(j) temperature rise (f), ignition (g), melting (h), expansion of ignition area (i) and cooling (j) stages of TA29 alloy with sufficient combustion.

    图 2  不同燃烧状态TA29合金的宏观形貌 (a), (b) 未燃烧样品的摩擦表面与背侧形貌; (c), (d) 临界燃烧样品的摩擦表面与背侧形貌; (e), (f) 充分燃烧样品的摩擦表面与背侧形貌

    Fig. 2.  Macrostructure of TA29 alloy with different ignition states: (a), (b) Friction surface and back of samples without ignition; (c), (d) friction surface and back of samples with critical ignition; (e), (f) friction surface and back of samples with sufficient combustion.

    图 3  双束电子显微镜相 (a) 减薄前熔凝区/热影响区界面; (b) 减薄后熔凝区/热影响区界面; (c) 减薄前熔凝区/燃烧区界面; (d) 减薄后熔凝区/燃烧区界面

    Fig. 3.  FIB images: (a) Fusion zone/heat-affected zone before thinning; (b) fusion zone/heat-affected zone after thinning; (c) burning zone/fusion zone before thinning; (d) burning zone/fusion zone after thinning.

    图 4  TA29氧化阶段形成组织的SEM形貌 (a) 整体形貌; (b) 基体/氧化区界面放大

    Fig. 4.  SEM morphology of TA29 alloy formed at oxidation stage: (a) Overall morphology; (b) an enlarged view of the matrix/oxidation boundary.

    图 5  TA29合金起燃阶段形成的冷却组织 (a) 整体形貌; (b) 基体/过渡区/热影响区放大形貌; (c) 热影响区/熔凝区/燃烧区放大形貌

    Fig. 5.  SEM morphology of TA29 alloy cooled at the initial ignition stage: (a) Overall morphology; (b) enlarged view of matrix/transitional zone/heat-affected zone; (c) enlarged view of heat-affected zone/fusion zone/burning zone.

    图 6  TA29合金扩展燃烧阶段冷却后燃烧组织 (a)整体形貌; (b)熔凝区/燃烧区放大形貌

    Fig. 6.  SEM morphology of TA29 alloy cooled at extended combustion stage: (a) Overall morphology; (b) enlarged view of fusion zone/burning zone.

    图 7  TA29合金燃烧组织热影响区/熔凝区界面的TEM形貌 (a) 热影响区内Ti基体中的堆叠层错; (b) 热影响区内α-Ti的SAED图样; (c) 熔凝区内析出相的分布; (d) 图(c)中央晶粒的SAED图样; (e) Al2O3的SAED图样; (f) Al2O3/α-Ti界面的HRTEM图像

    Fig. 7.  TEM morphology of the combustion microstructure in the heat-affected zone/fusion zone of TA29 alloy: (a) Stacking faults in Ti matrix in heat-affected zone; (b) SAED pattern of α-Ti in heat-affected zone; (c) distribution of precipitates in fusion zone; (d) SAED pattern of the central grain in panel (c); (e) SAED pattern of Al2O3; (f) HRTEM image of Al2O3/α-Ti interface.

    图 8  TA29合金燃烧组织熔凝区/燃烧区界面的TEM形貌 (a) Ti基体中大量析出相; (b)图(a)中位置1析出相电子衍射图样; (c) 图(a)中位置1周围基体的电子衍射图样; (d)图(a)中位置1处Ti2O3与基体的左侧界面HRTEM图片; (e) 图(a)中位置1处Ti2O3与基体的左侧界面FFT图像; (f) 图(a)中位置1处Ti2O3与基体的右侧界面HRTEM图片; (g) 图(a)中位置1处Ti2O3与基体的右侧界面FFT图像

    Fig. 8.  TEM morphology of the fusion zone/burning zone boundary of ignited TA29 alloy: (a) Precipitates in Ti matrix; (b) SAED pattern of position 1 in panel (a); (c) SAED pattern of the matrix around position 1 in panel (a); (d) HTREM image of the left interface between Ti2O3 and matrix at position 1 in panel (a); (e) FFT pattern of the left interface between Ti2O3 and matrix at position 1 in panel (a); (f) HTREM image of the right interface between Ti2O3 and matrix at position 1 in panel (a); (g) FFT pattern of the right interface between Ti2O3 and matrix at position 1 in panel (a).

    图 9  金红石型TiO2/β-Ti界面处晶格畸变的HRTEM表征结果 (a) 图8(a)中位置2处TiO2析出相与β-Ti的左侧界面; (b) β-Ti的电子衍射图样; (c) TiO2的电子衍射图样; (d) 图8(a)中位置2处TiO2析出相与β-Ti的右侧界面; (e) 图(c)中位置1析出相原子排布; (f) 图(d)中位置8析出相原子排布; (g) 图(d)中位置10的β-Ti基体原子排布; (h) TiO2$ {\text{(1}}\overline {1} {\text{1)}} $晶面的原子投影; (i) TiO在$ {\text{(}}\overline {1} {\text{10)}} $晶面的原子投影; (j) β-Ti在$ {\text{(}}\overline {1} {\text{11)}} $晶面的原子投影

    Fig. 9.  HRTEM observation of lattice distortion at the rutile TiO2/β-Ti interface: (a) Left interface of TiO2 precipitate and β-Ti at position 2 in Fig. 8(a); (b) SAED pattern of β-Ti; (c) SAED pattern of TiO2; (d) coherent interface between TiO2 and β-Ti on the right side at position 2 in Fig. 8(a); (e) atomic arrangement at position 1 in panel (c); (f) atomic arrangement at position 8 in panel (d); (g) atomic arrangement of at position 10 in panel (d); (h) projection of atoms in rutile TiO2 to $ {\text{(1}}\overline {1} {\text{1)}} $; (i) projection of atoms in TiO to $ (\bar{1}10) $; (j) projection of atoms in β-Ti to $ (\bar{1}11) $.

    图 10  TA29合金燃烧组织演变示意图 (a)氧化阶段; (b)起燃阶段; (c)扩展燃烧阶段; (d)燃烧后的冷凝组织

    Fig. 10.  Schematic diagram of the microstructure evolution of ignited TA29: (a) Oxidation stage; (b) initial ignition stage; (c) extended combustion stage; (d) cooling stage after burning.

    图 11  Ti-O相图[8]

    Fig. 11.  Phase diagram of Ti-O[8].

    图 12  TA29合金氧化及燃烧的热力学平衡关系. 不同温度下氧化组织各物质蒸气压与氧分压的关系 (a) 900 K, (b) 1900 K, (c) 2200 K. (d)最大蒸气压和(e)最大蒸气压增长速率与温度的关系; (f)燃烧组织中的蒸气压与氧分压的关系

    Fig. 12.  Thermodynamic balance relationship of the oxidation and burning behavior of TA29 alloy. The relationship between vapor pressure and oxygen partial pressure of substances in oxidation structure at different temperatures: (a) 900 K; (b) 1900 K; (c) 2200 K. Relationship between temperature and (d) maximum vapor pressure and (e) its growth rate; (f) relationship between vapor pressure and oxygen partial pressure in burning structure.

    表 1  TA29合金摩擦实验参数与燃烧状态

    Table 1.  Friction experimental parameters and combustion states of TA29 alloy.

    摩擦时间t = 3 s摩擦时间t = 4 s摩擦时间t = 5 s
    氧浓度/%燃烧状态氧浓度/%燃烧状态氧浓度/%燃烧状态
    37.3充分燃烧36.0充分燃烧35.5充分燃烧
    37.0充分燃烧35.7充分燃烧35.2充分燃烧
    36.8临界燃烧35.4临界燃烧34.9临界燃烧
    36.5未燃烧35.1未燃烧34.6未燃烧
    36.2未燃烧34.8未燃烧34.3未燃烧
    下载: 导出CSV

    表 2  TA29合金氧化阶段形成组织的元素分布

    Table 2.  Element distribution of TA29 alloy after oxidation stage.

    元素区域1/%区域2/%区域3/%区域4/%区域5/%
    Ti81.383.074.080.365.4
    Al11.111.110.910.810.1
    Zr1.91.91.71.71.5
    Sn1.51.61.31.61.2
    O4.22.412.15.621.8
    下载: 导出CSV

    表 3  TA29合金起燃阶段冷却形成燃烧组织的元素分布

    Table 3.  Element distribution of TA29 alloy cooled at initial ignition stage.

    元素区域1/%区域2/%区域3/%区域4/%
    Ti32.762.741.267.2
    Al2.22.22.510.3
    Zr0.90.71.61.3
    Sn0.10.31.01.4
    O64.134.153.719.8
    下载: 导出CSV

    表 4  TA29合金扩展燃烧阶段冷却形成燃烧组织的元素分布

    Table 4.  Element distribution in TA29 alloy cooled at extended combustion stage.

    元素区域1/%区域2/%区域3/%区域4/%区域5/%
    Ti72.13332.840.859.4
    Al14.55.35.13.35.2
    Zr1.30.80.51.10.9
    Sn1.00.20.40.70.6
    O11.160.761.254.133.9
    下载: 导出CSV

    表 5  存在晶格畸变的TiO2析出相及β-Ti基体晶面间距测量值与理论值

    Table 5.  Measured values and theoretical values of interplane spacing in TiO2 precipitates and β-Ti matrix with lattice distortion.

    间距/Å区域 1区域 2区域 3区域 4区域 5区域 6区域 7
    d2.813.093.123.143.133.062.95
    h2.912.942.982.932.812.642.77
    间距/Å区域 8区域 9区域 10区域 11理想TiO理想TiO2理想 β-Ti
    d2.622.595.414.802.413.574.68
    h2.952.942.912.882.482.482.34
    下载: 导出CSV

    表 6  TA29合金熔体的相关物性参数

    Table 6.  Physical parameters of TA29 alloy melt.

    物理量数值
    熔体密度$ \rho $/(kg·m3)4000
    液相线温度TM/K1873
    摩尔质量M/(kg·mol)0.04674
    Ti原子半径rTi/(10–10 m)2.00
    Al原子半径rAl/(10–10 m)1.18
    下载: 导出CSV

    表 7  不同温度下Ti-O体系单质及化合物的Gibbs自由能和平衡常数

    Table 7.  Gibss energy and equilibrium constant of the simple substance and compound in Ti-O system at different temperatures.

    T = 900 KO2(g)Ti(s)Ti(g)TiO(s)TiO(g)Ti2O3(s)Ti2O3(g)TiO2(s)TiO2(g)
    自由能G–196.7–38.3302.4–592.2–169.3–1638.9–1100–1009.1–400
    自由能变化${ {\Delta } }{G^\varTheta }(T)$00+340.7–455.5–32.7–1267.3–728.4–774.1–165.0
    平衡常数对数lgKp–19.826.41.973.642.344.99.6
    T = 1900 KO2(g)Ti(s)Ti(g)TiO(s)TiO(g)Ti2O3(s)Ti2O3(g)TiO2(s)TiO2(g)
    自由能G–451.5–115.7+88.2–695.2–457.7–1921.6–1600–1171.0–750
    自由能变化${ {\Delta } }{G^\varTheta }(T)$00+203.9–367.6–116.2–1012.8–691.4–603.7–182.8
    平衡常数对数lgKp–5.6110.13.1927.919.016.65.0
    T = 2200 KO2(g)Ti(l)Ti(g)TiO(s)TiO(g)Ti2O3(s)Ti2O3(g)TiO2(s)TiO2(g)
    自由能G–532.4–145.2+21.2–756.6–548.8–2028.9–1710–1229.4–860
    自由能变化${ {\Delta } }{G^\varTheta }(T)$00+166.3–345.2–137.5–939.9–621.0–551.8–182.4
    平衡常数对数 lgKp–3.98.23.222.314.713.14.3
    下载: 导出CSV
  • [1]

    Peters M, Kumpfert J, Ward C H, Leyens C 2003 Adv. Eng. Mater. 5 419Google Scholar

    [2]

    蔡建明, 弭光宝, 高帆, 黄浩, 曹京霞, 黄旭, 曹春晓 2016 材料工程 44 1

    Cai J M, Mi G B, Gao F, Huang H, Cao J X, Huang X, Cao C X 2016 J. Mater. Eng. 44 1

    [3]

    Leyens C, Kocian K, Hausmann J, Kaysser W A 2003 Aerosp. Sci. Tech. 7 201Google Scholar

    [4]

    Wolf J S, Moyle D D, Pruitt A B, Bader J H 1976 J. Electrochem. Soc. 123 C251

    [5]

    Joel S, Nathan J, Timothy G 2012 J. Astm. Int. 35 736Google Scholar

    [6]

    Shafirovich E, Teoh S K, Varma A 2008 Combust. Flame 152 262Google Scholar

    [7]

    Li X L, Hillel R, Teyssandier F, Chou S J 1992 Acta Metall. 40 3149Google Scholar

    [8]

    Wagner S, Arpshofen I, Seifert H J The Binary System Ti-O MSIT [2023-3-10]

    [9]

    Leyens C, Peters M, Kaysser W A 1996 Mater. Sci. Tech. 15 1326Google Scholar

    [10]

    Qu S J, Tang S Q, Feng A H, Feng C, Shen J, Chen D L 2018 Acta Mater. 148 300Google Scholar

    [11]

    Jiang B B, Wen D H, Wang Q, Che J D, Dong C, Liao P K, Xu F, Sun L X 2019 J. Mater. Sci. Techol. 35 1008Google Scholar

    [12]

    Luthra K L 1991 Oxid. Met. 36 274Google Scholar

    [13]

    Wu H H, Trinkle D R 2011 Phys. Rev. Lett. 107 045504Google Scholar

    [14]

    弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓 2016 物理学报 65 056103Google Scholar

    Mi G B, Huang X, Cao J X, Wang B, Cao C X 2016 Acta Phys. Sin. 65 056103Google Scholar

    [15]

    Kofstad P 1967 J. L. Com. Met. 12 449Google Scholar

    [16]

    Shang S L, Fang H Z, Wang J 2014 Corros. Sci. 83 94Google Scholar

    [17]

    Muravyev N V, Monogarov K A, Zhigach A N, Leipunsky U O, Fomenkov I V, Pivkina A N 2018 Combust. Flame 191 109Google Scholar

    [18]

    Millogo M, Bernard S, Gillard P, Frascati F 2018 J. Loss Prev. Process Ind. 56 254Google Scholar

    [19]

    Derevyaga M E, Fedorin L 1976 Combust. Explo. Shock 12 493

    [20]

    Zhao Y Q, Zhou L, Deng J 1999 Rare Metal. Mat. Eng. 28 77

    [21]

    Rahmel A, Spencer P J 1990 Oxid. Metal 35 53Google Scholar

    [22]

    Zhang M, Hsieh K, Dekock J, Chang Y A 1992 Scripta Metal. Mater. 27 1361Google Scholar

    [23]

    Li R, Zhang P, Li X, Zhang C, Zhao J J 2013 J. Nucl. Mater. 435 71Google Scholar

    [24]

    Liu Z, Welsch G 1988 Metal. Trans. 19 1121Google Scholar

    [25]

    Scotti L, Mottura A 2016 J. Chem. Phys. 144 84701Google Scholar

    [26]

    Perez R A, Nakajima H, Dyment F 2003 Mater. Trans. 44 2Google Scholar

    [27]

    Shao L, Xie G L, Liu X H, et al. 2022 Corros. Sci. 194 109957Google Scholar

    [28]

    Mi G B, Huang X, Li P J, Cao J X, Huang X, Cao C X 2012 T. Nonferr. Metal. Soc. 22 2409Google Scholar

    [29]

    梁贤烨, 弭光宝, 李培杰, 黄旭, 曹春晓 2020 物理学报 69 216101Google Scholar

    Liang X Y, Mi G B, Li P J, Huang X, Cao C X 2020 Acta Phys. Sin. 69 216101Google Scholar

    [30]

    Ouyang P X, Mi G B, Cao J X, Huang X, He L J, Li P J 2018 Mater. Today Commun. 16 364Google Scholar

    [31]

    Shao L, Li Z B, Yu J B, Yang G, Zhang C, Zou Y, Huang J F 2021 Corros. Sci. 192 109868Google Scholar

    [32]

    Shao L, Xie G L, Liu X H, Wu Y, Yu J B, Feng K, Xue W L 2021 Corros. Sci. 190 109641Google Scholar

    [33]

    Zhao Y Q, Zhou L, Zhu K Y, Qu H L, Wu H 2001 J. Mater. Sci. Tech. 17 677

    [34]

    Zhao Y Q, Zhou L A, Deng J 1999 Mater. Sci. Eng. A 267 167Google Scholar

    [35]

    胡庚祥, 蔡珣, 戎咏华 2010 材料科学基础 (第3版) (上海: 上海交通大学出版社) 第392—397页

    Hu G X, Cai X, Rong Y H 2010 Fundamentals of Materials Science (3rd Ed.) (Shanghai: Shanghai Jiao Tong University Press) pp392–397 (in Chinese)

    [36]

    Fischer F D, Bohm H J, Oberaigner E R, Waitz T 2006 Acta Mater. 54 151Google Scholar

    [37]

    Fischer F D, Svoboda J, Petryk H 2014 Acta Mater. 67 1Google Scholar

    [38]

    Fischer F D, Svoboda J, Antretter T, Kozeschnik E 2015 Int. J. Plast. 64 164Google Scholar

    [39]

    Bohm H J, Zickler G A, Fischer F D, Svoboda J 2021 Mech. Mater. 155 103781Google Scholar

    [40]

    Dehm G, Scheu C, Rühle M, Raj R 1998 Acta Mater. 46 759Google Scholar

    [41]

    Taniguchi S, Shibata T, Katoh J N 1991 Mater. Trans. 32 151Google Scholar

    [42]

    Wallace T A, Clark R K, Wiedemann K E, Sankaran S N 1992 Oxid. Met. 37 111Google Scholar

    [43]

    Shimizu T, Ikubo T, Isobe S 1992 Mater. Sci. Eng. A 153 602Google Scholar

    [44]

    Tang S L, Li Y F, Wang Y R, Gao Y M, Zheng Q L, Yi D W 2018 Mater. Chem. Phys. 213 538Google Scholar

    [45]

    巴伦I 著 (程乃良 译) 2003 纯物质热化学数据手册 (北京: 科学出版社) 第1672—1698页

    Brain I (translated by Cheng N L) 2003 Thermalchemical Data of Pure Substances (Beijing: Science Press) pp1672–1698 (in Chinese)

    [46]

    Groves W O, Hoch M, Johnston H L 1955 J. Phys. Chem. 55 127

    [47]

    Heideman S A, Reed T B, Gilles P W 1980 High Temp. Sci. 12 79

    [48]

    Waldner P, Eriksson G 1999 Calphad 23 189Google Scholar

  • [1] 吴明宇, 弭光宝, 李培杰. 近α型高温钛合金起燃机理. 物理学报, 2024, 73(8): 086103. doi: 10.7498/aps.73.20240003
    [2] 田子阳, 赵会杰, 尉昊赟, 李岩. 基于混合飞秒/皮秒相干反斯托克斯拉曼散射的动态高温燃烧场温度测量. 物理学报, 2021, 70(21): 214203. doi: 10.7498/aps.70.20211144
    [3] 高荣贞, 王静, 王俊升, 黄厚兵. Landau-Devonshire理论探究不同类型铁电材料的电卡效应. 物理学报, 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [4] 蔡继兴, 郭明, 渠旭, 李贺, 金光勇. 激光诱导等离子体的气体动力学和燃烧波扩展速度研究. 物理学报, 2017, 66(9): 094202. doi: 10.7498/aps.66.094202
    [5] 汤文辉, 徐彬彬, 冉宪文, 徐志宏. 高温等离子体的状态方程及其热力学性质. 物理学报, 2017, 66(3): 030505. doi: 10.7498/aps.66.030505
    [6] 罗明海, 黎明锴, 朱家昆, 黄忠兵, 杨辉, 何云斌. CdxZn1-xO合金热力学性质的第一性原理研究. 物理学报, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [7] 弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓. 摩擦点火Ti-V-Cr阻燃钛合金燃烧产物的组织特征. 物理学报, 2016, 65(5): 056103. doi: 10.7498/aps.65.056103
    [8] 张建新, 王海燕, 高爱华, 樊世克. Mg-Sn-Si系合金的热力学基础及合金相演变过程分析. 物理学报, 2015, 64(6): 066401. doi: 10.7498/aps.64.066401
    [9] 张新伟, 华正和, 蒋毓文, 杨绍光. 溶胶凝胶自燃烧法合成金属与合金材料研究进展. 物理学报, 2015, 64(9): 098101. doi: 10.7498/aps.64.098101
    [10] 杨亮, 魏承炀, 雷力明, 李臻熙, 李赛毅. 两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟. 物理学报, 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [11] 张炜, 陈文周, 王俊斐, 张小东, 姜振益. MnPd合金相变, 弹性和热力学性质的第一性原理研究. 物理学报, 2012, 61(24): 246201. doi: 10.7498/aps.61.246201
    [12] 张杨, 宋晓艳, 徐文武, 张哲旭. SmCo7纳米晶合金晶粒组织热稳定性的热力学分析与计算机模拟. 物理学报, 2012, 61(1): 016102. doi: 10.7498/aps.61.016102
    [13] 姬广富, 张艳丽, 崔红玲, 李晓凤, 赵峰, 孟川民, 宋振飞. 从头算方法研究面心立方铝在高温高压下的热力学状态方程. 物理学报, 2009, 58(6): 4103-4108. doi: 10.7498/aps.58.4103
    [14] 吴钦宽. 一类燃烧模型的同伦分析解法. 物理学报, 2008, 57(5): 2654-2657. doi: 10.7498/aps.57.2654
    [15] 刘玮书, 张波萍, 李敬锋, 刘 静. 机械合金化合成CoSb3过程中的固相反应机理的热力学解释. 物理学报, 2006, 55(1): 465-471. doi: 10.7498/aps.55.465
    [16] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究. 物理学报, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
    [17] 韩祥临. 一个燃烧模型的近似解. 物理学报, 2004, 53(12): 4061-4064. doi: 10.7498/aps.53.4061
    [18] 梁芳营. 高温超导体的热力学性质的研究. 物理学报, 2002, 51(4): 898-901. doi: 10.7498/aps.51.898
    [19] 曹治觉, 郭 愚. 冷凝器壁面滴状冷凝的热力学机理及最佳接触角. 物理学报, 1999, 48(10): 1823-1830. doi: 10.7498/aps.48.1823
    [20] 程开甲;李正中. 内耗的热力学研究_代位合金在有序或无序态的内耗理论. 物理学报, 1956, 12(4): 281-297. doi: 10.7498/aps.12.281
计量
  • 文章访问数:  2682
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-15
  • 修回日期:  2023-05-05
  • 上网日期:  2023-06-14
  • 刊出日期:  2023-08-20

/

返回文章
返回