搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光诱导等离子体的气体动力学和燃烧波扩展速度研究

蔡继兴 郭明 渠旭 李贺 金光勇

引用本文:
Citation:

激光诱导等离子体的气体动力学和燃烧波扩展速度研究

蔡继兴, 郭明, 渠旭, 李贺, 金光勇

Gas dynamics and combustion wave expanding velocity of laser induced plasma

Cai Ji-Xing, Guo Ming, Qu Xu, Li He, Jin Guang-Yong
PDF
导出引用
  • 针对激光对熔石英材料产生致燃损伤过程中存在的激光支持燃烧波,考虑激光作用的温度残余、目标形貌的改变、喷溅物质分布、目标表面气流状况的分布等效应,分阶段对激光支持燃烧波的过程进行建模和仿真研究.通过建立二维轴对称气体动力学模型,模拟研究包含逆韧致辐射、热辐射、热传导和对流过程在内的激光能量传输过程.此外,依据激光支持燃烧波在可见光波段具有明显的辐射特征这一特点,利用阴影法测量了激光对熔石英致燃损伤过程中的燃烧波扩展速度,得到了燃烧波演化过程图像.研究结果表明:在平行激光束作用下,燃烧波的传播是稳态的,气体动力学行为比较稳定;在聚焦激光束作用下,燃烧波的传播是非稳态的.模拟结果中得到的激光支持燃烧波扩展速度及气体动力学结构与实验结果和理论推导结果符合得很好,验证了理论模型的正确性.
    Fused silica is an indispensable basic element in a laser system and the weakest link in all components. When the laser interacts with fused silica, the target absorbs the laser energy so that its own temperature rises, and then it melts and vaporizes. The vaporization of the target gasification further absorbs the laser energy and produces a low density ionization reaction, resulting in the laser supported combustion wave (LSCW) phenomenon. In this paper, taking into account the effects of temperature residual, change in target morphology, distribution of splash material, and distribution of target surface airflow condition, we model and simulate the process of LSCW in stages. The laser energy transfer process, including the inverse bremsstrahlung radiation, thermal radiation, heat conduction and convection processes, is simulated by establishing a two-dimensional axisymmetric gas dynamic model. In addition, the LSCW in the visible light band has a strong radiation characteristic, which is significantly different from the laser induced target melting and vaporization phenomenon. The LSCW is easily received and displayed by high-speed camera. Therefore, a shadow system is established to measure the expanding velocity of the combustion wave in the process of fused silica damaged by laser, and the evolution process image of the combustion wave is obtained. The results show that under the action of parallel laser beam, the propagation of the combustion wave is in a steady-state and the gas dynamic behavior is stable. For the pulse widths of 1 ms and 3 ms, the average propagation velocity of the LSCW is calculated to be about 24 m/s, which is consistent with the experimental result in the literature available. This verifies the correctness of our theoretical model. For the pulse width of 3 ms, the average velocity of the flow field near the wavefront is calculated to be about 200 m/s. The numerical relationship between the velocity of the flow field and the propagation velocity of the LSCW is also basically consistent with the theoretical derivation result. Under the action of focused laser beam, the propagation of the combustion wave is unsteady. For the pulse widths of 1 ms, the laser intensity at the front of the plasma decreases gradually and the beam radius becomes larger. For the pulse width of 1.8 ms, both a similar pattern of mushroom cloud in the combustion wave and turbulence are observed, which is basically consistent with the evolution process of the combustion wave appearing in our experiment. The simulation results are in good accordance with the experimental results, and also provide a theoretical and experimental basis for studying the LSCW of fused silica.
      通信作者: 金光勇, jgycust@163.com
    • 基金项目: 吉林省科学技术厅项目(批准号:20150622011JC)资助的课题.
      Corresponding author: Jin Guang-Yong, jgycust@163.com
    • Funds: Project supported by the Science and Technology Department of Jilin Province, China (Grant No. 20150622011JC).
    [1]

    Han W, Feng B, Zheng K X, Zhu Q H, Zheng W G, Gong M L 2016 Acta Phys. Sin. 65 246102 (in Chinese) [韩伟, 冯斌, 郑奎兴, 朱启华, 郑万国, 巩马理 2016 物理学报 65 246102]

    [2]

    Doualle T, Gallais L, Cormont P, Hbert D, Combis P, Rullier J L 2016 J. Appl. Phys. 119 113106

    [3]

    Kozlowski M R, Thomas I M, Campbell J H, Rainer F 1993 Proc. SPIE 1782 105

    [4]

    Pan Y J, Feng J 1996 Semicond. Photon. Technol. 2 199

    [5]

    Liu H J, Huang J, Wang F R, Zhou X D, Jiang X D, Wu W D 2010 Acta Phys. Sin. 59 1308 (in Chinese) [刘红婕, 黄进, 王凤蕊, 周信达, 蒋晓东, 吴卫东 2010 物理学报 59 1308]

    [6]

    Pan Y X, Zhang H C, Chen J, Han B, Shen Z H, Lu J, Ni X W 2015 Opt. Express 23 765

    [7]

    Sharma S P, Oliveira V, Rui V 2016 Appl. Phys. A 22 1

    [8]

    Qi L J, Zhu X, Zhu C H, Zhu G Z, Yang T 2008 Proc. SPIE 6825 68250A

    [9]

    Wang B, Qin Y, Ni X W, Shen Z H, Lu J 2010 Appl. Opt. 49 5537

    [10]

    Dai G, Lu J, Liu J, Qin Y, Ni X W 2011 J. Test Meas. Technol. 25 122 (in Chinese) [戴罡, 陆建, 刘剑, 秦渊, 倪晓武 2011 测试技术学报 25 122]

    [11]

    Yoshida K, Tochio N, Ohya M, Matsuoka T, Yagi K, Ochi K, Kaku S, Kamimura T, Kuzuu N 2000 Proc. SPIE 3902 169

    [12]

    Badziak J, Hora H, Woryna E, Jabłoński S, Laśka L, Parys P, Rohlena K, Wołowski J 2003 Phys. Lett. A 315 452

    [13]

    Alvisi M, Giulio M D, Marrone S G, Perrone M R, Protopapa M L, Valentini A, Vasanelli L 2000 Thin Solid Films 358 250

    [14]

    Dai G, Chen Y B, Lu J, Shen Z H, Ni X W 2009 Chin. Opt. Lett. 7 601

    [15]

    Xu Y, Zhang B, Fan W H, Wu D, Sun Y H 2003 Thin Solid Films 440 180

    [16]

    Milam D, Bradbury R A, Bass M 1973 Appl. Phys. Lett. 23 654

    [17]

    Capitelli M, Colonna G, Gorse C, D'Angola A 2000 Eur. Phys. J. D 11 279

    [18]

    Bogatyreva N, Bartlova M, Aubrecht V 2011 J. Phys.: Conf. Ser. 275 012009

    [19]

    Klosterman E L, Byron S R 1974 J. Appl. Phys. 45 4751

    [20]

    Guskov K G, Raizer Y P, Surzhikov S T 1990 Sov. J. Quantum Electron. 20 860

  • [1]

    Han W, Feng B, Zheng K X, Zhu Q H, Zheng W G, Gong M L 2016 Acta Phys. Sin. 65 246102 (in Chinese) [韩伟, 冯斌, 郑奎兴, 朱启华, 郑万国, 巩马理 2016 物理学报 65 246102]

    [2]

    Doualle T, Gallais L, Cormont P, Hbert D, Combis P, Rullier J L 2016 J. Appl. Phys. 119 113106

    [3]

    Kozlowski M R, Thomas I M, Campbell J H, Rainer F 1993 Proc. SPIE 1782 105

    [4]

    Pan Y J, Feng J 1996 Semicond. Photon. Technol. 2 199

    [5]

    Liu H J, Huang J, Wang F R, Zhou X D, Jiang X D, Wu W D 2010 Acta Phys. Sin. 59 1308 (in Chinese) [刘红婕, 黄进, 王凤蕊, 周信达, 蒋晓东, 吴卫东 2010 物理学报 59 1308]

    [6]

    Pan Y X, Zhang H C, Chen J, Han B, Shen Z H, Lu J, Ni X W 2015 Opt. Express 23 765

    [7]

    Sharma S P, Oliveira V, Rui V 2016 Appl. Phys. A 22 1

    [8]

    Qi L J, Zhu X, Zhu C H, Zhu G Z, Yang T 2008 Proc. SPIE 6825 68250A

    [9]

    Wang B, Qin Y, Ni X W, Shen Z H, Lu J 2010 Appl. Opt. 49 5537

    [10]

    Dai G, Lu J, Liu J, Qin Y, Ni X W 2011 J. Test Meas. Technol. 25 122 (in Chinese) [戴罡, 陆建, 刘剑, 秦渊, 倪晓武 2011 测试技术学报 25 122]

    [11]

    Yoshida K, Tochio N, Ohya M, Matsuoka T, Yagi K, Ochi K, Kaku S, Kamimura T, Kuzuu N 2000 Proc. SPIE 3902 169

    [12]

    Badziak J, Hora H, Woryna E, Jabłoński S, Laśka L, Parys P, Rohlena K, Wołowski J 2003 Phys. Lett. A 315 452

    [13]

    Alvisi M, Giulio M D, Marrone S G, Perrone M R, Protopapa M L, Valentini A, Vasanelli L 2000 Thin Solid Films 358 250

    [14]

    Dai G, Chen Y B, Lu J, Shen Z H, Ni X W 2009 Chin. Opt. Lett. 7 601

    [15]

    Xu Y, Zhang B, Fan W H, Wu D, Sun Y H 2003 Thin Solid Films 440 180

    [16]

    Milam D, Bradbury R A, Bass M 1973 Appl. Phys. Lett. 23 654

    [17]

    Capitelli M, Colonna G, Gorse C, D'Angola A 2000 Eur. Phys. J. D 11 279

    [18]

    Bogatyreva N, Bartlova M, Aubrecht V 2011 J. Phys.: Conf. Ser. 275 012009

    [19]

    Klosterman E L, Byron S R 1974 J. Appl. Phys. 45 4751

    [20]

    Guskov K G, Raizer Y P, Surzhikov S T 1990 Sov. J. Quantum Electron. 20 860

  • [1] 宋利伟, 石颖, 陈树民, 柯璇, 侯晓慧, 刘志奇. 地下黏弹性介质波动方程及波场数值模拟. 物理学报, 2021, 70(14): 149102. doi: 10.7498/aps.70.20210005
    [2] 柴振霞, 刘伟, 杨小亮, 周云龙. 可变周期谐波平衡法求解周期性非定常涡脱落问题. 物理学报, 2019, 68(12): 124701. doi: 10.7498/aps.68.20190126
    [3] 陈俊, 沈超群, 王贺, 张程宾. 液-液两相液层间传质过程的Rayleigh-Bénard-Marangoni对流特性. 物理学报, 2019, 68(7): 074701. doi: 10.7498/aps.68.20181295
    [4] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [5] 王路, 徐江荣. 两相湍流统一色噪声法概率密度函数模型. 物理学报, 2015, 64(5): 054704. doi: 10.7498/aps.64.054704
    [6] 白占国, 李新政, 李燕, 赵昆. 气体放电系统中多臂螺旋波的数值分析. 物理学报, 2014, 63(22): 228201. doi: 10.7498/aps.63.228201
    [7] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究. 物理学报, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [8] 蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳, 郑万国, 祖小涛. CO2激光光栅式扫描修复熔石英表面缺陷的实验研究与数值模拟. 物理学报, 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [9] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比. 物理学报, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [10] 靳冬欢, 刘文广, 陈星, 陆启生, 赵伊君. 三股互击式喷注器及燃烧室流场的数值模拟. 物理学报, 2012, 61(6): 064206. doi: 10.7498/aps.61.064206
    [11] 李哲, 江海河, 王礼, 杨经纬, 吴先友. 2 m Cr,Tm,Ho:YAG激光热退偏效应的数值模拟及实验研究. 物理学报, 2012, 61(4): 044205. doi: 10.7498/aps.61.044205
    [12] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [13] 朱昌盛, 王军伟, 王智平, 冯力. 受迫流动下的枝晶生长相场法模拟研究. 物理学报, 2010, 59(10): 7417-7423. doi: 10.7498/aps.59.7417
    [14] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [15] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [16] 宗楠, 崔大复, 李成明, 彭钦军, 许祖彦, 秦莉, 李特, 宁永强, 晏长岭, 王立军. 光抽运垂直扩展腔面发射激光器腔内倍频理论研究. 物理学报, 2009, 58(6): 3903-3908. doi: 10.7498/aps.58.3903
    [17] 王雨虹, 王江安, 任席闯. 激光空泡特性实验与数值计算研究. 物理学报, 2009, 58(12): 8372-8378. doi: 10.7498/aps.58.8372
    [18] 杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓. 采用多相场法研究三维层片共晶生长的厚度效应. 物理学报, 2008, 57(8): 5290-5295. doi: 10.7498/aps.57.5290
    [19] 刘明海, 菅井秀郎, 胡希伟, 石岛芳夫, 江中和, 李 斌, 但 敏. 大面积表面波等离子体的特性研究. 物理学报, 2006, 55(11): 5905-5908. doi: 10.7498/aps.55.5905
    [20] 周玉刚, 沈波, 刘杰, 周慧梅, 俞慧强, 张荣, 施毅, 郑有炓. 用肖特基电容电压特性数值模拟法确定调制掺杂AlxGa1-xN/GaN异质结中的极化电荷. 物理学报, 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
计量
  • 文章访问数:  6577
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-22
  • 修回日期:  2017-01-06
  • 刊出日期:  2017-05-05

/

返回文章
返回