搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液-液两相液层间传质过程的Rayleigh-Bénard-Marangoni对流特性

陈俊 沈超群 王贺 张程宾

引用本文:
Citation:

液-液两相液层间传质过程的Rayleigh-Bénard-Marangoni对流特性

陈俊, 沈超群, 王贺, 张程宾

Rayleigh-Bénard-Marangoni convection characteristics during mass transfer between liquid layers

Chen Jun, Shen Chao-Qun, Wang He, Zhang Cheng-Bin
PDF
HTML
导出引用
  • 传质引发的Rayleigh-Bénard-Marangoni对流(RBM对流)对化工传递过程有着显著影响. 但是, 已有的相关研究多集中于气-液体系, 并且有限的针对液-液体系的相关研究尚缺乏对RBM对流演化及其引发的界面扰动行为的深入分析. 因此, 本文基于阴影法设计搭建了竖直狭缝内液-液两相液层间传质过程的RBM对流特性可视化实验平台, 并实验观测了水-甲苯-丙酮三元体系中丙酮组分扩散传质时出现的RBM对流结构以及其向下层水相主体的发展演变过程, 探讨了水相丙酮初始浓度、甲苯相丙酮初始浓度以及甲苯层厚度对RBM对流特性和液-液界面形貌的影响. 研究表明: 在Rayleigh-Taylor不稳定性作用下, 水相上层密度(重力)分层“界面”下凸沉降形成波浪形丘状“界面”, 并随着“界面”处密度与压力失调的加剧而演变成羽状流; 因羽流区“界面”不同浓度梯度引起的传质特性差异, 羽状流又可以演变成弱羽状流和强羽状流两种形态; 当丙酮浓度梯度增大到一定程度后, 近界面处短时间内产生大量RBM对流结构, 且结构间相互影响增强而聚并成对流团, 并随着传质过程的进行, 逐渐演变成独立的强羽状流; RBM对流强度与上下液层丙酮浓度梯度大小呈正相关关系, 且液-液界面粗糙度及其非稳态波动随着丙酮浓度梯度的增加而增大.
    Rayleigh-Bénard-Marangoni convection (RBM convection) induced by the mass transfer has a great influence on the performance of real chemical engineering process. However, the researches of RBM convection characteristics during mass transfer across the interface in liquid-liquid system and their influence on the interface morphology are still limited. In this research, a visualization experiment via the amplified shadowgraph method is conducted to investigate the mass transfer in water-toluene-acetone system in a vertical slit. The convective structure of RBM and its evolution are visually observed. The effects of the initial acetone concentration of aqueous phase and toluene phase, and the thickness of toluene layer on the RBM characteristics and the morphology of the liquid-liquid interface are investigated. The experimental results show that these structures are induced by the interface tension difference along the interface and the vertical density difference caused by non-uniform mass transfer at the interface. As a result of the mass transfer at the interface, the density stratification occurs at the top of the aqueous phase, where the light liquid layer supports heavy one. In addition, non-uniform mass transfer produces perturbation at the top of the aqueous phase, which induces the Rayleigh-Taylor instability at the " interface” between the heavy and light liquid layer. Consequently, a wave-shaped-mound " interface” in the upper aqueous phase is formed as the heavy liquid comes down into the light one, and it can be further evolved into a plume flow with the enhancement of the imbalance between density and pressure at the " interface”. Due to the difference in mass transfer characteristic caused by different concentration gradients in the plume " interface”, the plumes can also evolve into weak plumes and strong plumes. Under the large acetone concentration gradient, a number of RBM convective structures are generated near the interface in a short time and the convective cloud is formed due to the dramatic interaction and coalescence between these structures. With the weakening of mass transfer, the convective cloud disappears and the strong plume is gradually formed. In addition, the strength of RBM convection is demonstrated to be positively correlated with the acetone concentration gradient across the aqueous solution- toluene interface. In addition, the roughness of the interface and its unsteady fluctuation grow up with the increase of acetone concentration gradient across the interface.
      通信作者: 张程宾, cbzhang@seu.edu.cn
    • 基金项目: 国家自然科学基金委员会-中国工程物理研究院联合基金(批准号: U1530260)、国家自然科学基金(批准号: 51706193)和江苏省高校自然科学研究项目(批准号: 17KJB470014)资助的课题.
      Corresponding author: Zhang Cheng-Bin, cbzhang@seu.edu.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1530260), the National Natural Science Foundation of China (Grant No. 51706193), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 17KJB470014).
    [1]

    Yao F, Chen Y P, Peterson G P 2013 Int. J. Heat Mass Transfer 64 418Google Scholar

    [2]

    Liu X D, Chen Y P, Shi M H 2013 Int. J. Therm. Sci. 65 224Google Scholar

    [3]

    Chen Y P, Cheng P 2005 Int. J. Heat Mass Transfer 32 931Google Scholar

    [4]

    Bodenschatz E, Pesch W, Ahlers G 2000 Annu. Rev. Fluid Mech. 32 709Google Scholar

    [5]

    王飞, 彭岚, 张全壮, 刘佳 2015 物理学报 64 140202Google Scholar

    Wang F, Peng L, Zhang Q Z, Liu J 2015 Acta Phys. Sin. 64 140202Google Scholar

    [6]

    翟薇, 王楠, 魏炳波 2007 物理学报 56 2353Google Scholar

    Zhai W, Wang N, Wei B B 2007 Acta Phys. Sin. 56 2353Google Scholar

    [7]

    Schwabe D 1999 Adv. Space Res. 24 1347Google Scholar

    [8]

    Touazi O, Chénier E, Doumenc F, Guerrier B 2010 Int. J. Heat Mass Transfer 53 656Google Scholar

    [9]

    Chen J, Yang C, Mao Z S 2015 Eur. Phys. J. Spec. Top. 224 389Google Scholar

    [10]

    Bo Z, Mao S, Han Z J, Cen K F, Chen J H, Kostya O 2015 Chem. Soc. Rev. 44 2018

    [11]

    张婷, 施保昌, 柴振华 2015 物理学报 64 254701

    Zhang T, Shi B C, Chai Z H 2015 Acta Phys. Sin. 64 254701

    [12]

    郑连存, 盛晓艳, 张欣欣 2006 物理学报 55 5298Google Scholar

    Zheng L C, Sheng X Y, Zhang X X 2006 Acta Phys. Sin. 55 5298Google Scholar

    [13]

    Kline J L, Hager J D 2016 Matter Radiat. Extremes 2 16

    [14]

    Dong S X, Han W, Liu M F, Zhang Z W, Li B, Ge L Q 2016 Colloids Surf. A 509 32Google Scholar

    [15]

    Bai L, Zhao S F, Fu Y H, Cheng Y 2016 Biochem. Eng. J. 298 281

    [16]

    Sun Z F 2012 Chem. Eng. Sci. 68 579Google Scholar

    [17]

    Liu C, Zeng A, Yuan X, Yu G 2008 Chem. Eng. Res. Des. 86 201Google Scholar

    [18]

    Alvarez-Herrera C, Moreno-Hernández D, Barrientos-García B, Guerrero-Viramontes J A 2005 Opt. Laser Technol. 41 233

    [19]

    Piekarska W, Kubiak M 2013 Appl. Math. Modell. 37 2051Google Scholar

    [20]

    Szymczyk J A 1991 Can. J. Chem. Eng. 69 1233

    [21]

    Okhotsimskii A, Hozawa M 1998 Chem. Eng. Sci. 53 2547Google Scholar

    [22]

    王勇, 张泽廷 2002 北京化工大学学报 29 11Google Scholar

    Wang Y, Zhang Z T 2002 J. Beijing Univ. Chem. Technol. 29 11Google Scholar

    [23]

    Sun Z F, Yu K T, S Y W, Miao Y Z 2002 Ind. Eng. Chem. Res. 41 1905Google Scholar

    [24]

    沙勇, 李樟云, 林芬芬, 吐芬, 肖宗源, 叶李艺 2010 化工学报 61 844

    Sha Y, Li Z Y, Lin F F, Tu F, Xiao Z Y, Ye L Y 2010 J. Chem. Ind. Eng. 61 844

    [25]

    Orell A, Westwater J W 1961 AlChE J. 8 350

    [26]

    Zhang S H, Wang Z M, Su Y F 1990 Chem. Eng. Res. Des. 68 84

    [27]

    Guzun-Stoica A, Kurzeluk M, Floarea O 2000 Chem. Eng. Sci. 55 3813Google Scholar

    [28]

    Kostarev K G, Shmyrov A V, Zuev A L, Viviani A 2011 Exp. Fluids 51 457Google Scholar

    [29]

    Chen Y, Cheng P 2005 Int. Commun. Heat Mass Transfer 32 175Google Scholar

    [30]

    Agble D, Mendes-Tatsis M A 2000 Int. J. Heat Mass Transfer 43 1025Google Scholar

    [31]

    Shi Y, Kerstin E 2007 Chin. J. Chem. Eng. 15 748Google Scholar

    [32]

    Chen Y P, Liu X D, Shi M H 2013 Appl. Phys. Lett. 102 051609Google Scholar

    [33]

    Chen Y P, Liu X D, Zhao Y J 2015 Appl. Phys. Lett. 106 141601Google Scholar

    [34]

    Chen Y P, Wu L Y, Zhang L 2015 Int. J. Heat Mass Transfer 82 42Google Scholar

    [35]

    Sharp D H 1984 Physica D 12 3Google Scholar

    [36]

    Roberts M S, Jacobs J W 2015 J. Fluid Mech. 787 50

    [37]

    胡楠, 张会书, 傅强, 李陆星, 袁希钢 2016 化工学报 68 584

    Hu L, Zhang H S, Fu Q, Li L X, Yuan X G 2016 J. Chem. Ind. Eng. 68 584

    [38]

    Puthenveettil B A, Arakeri J H 2005 J. Fluid Mech. 542 217Google Scholar

    [39]

    Yang C, Tartaglino U, Persson B N 2006 J. Phys. Rev. Lett. 97 11

  • 图 1  RBM对流的实验系统图 (a) 阴影法实验系统图; (b) 示踪粒子法实验系统图; (c) 玻璃狭缝尺寸图

    Fig. 1.  Schematic diagram of the experimental system for RBM convection: (a) Schematic diagram of the experimental system based on shadowgraph method; (b) schematic diagram of the experimental system based on particle tracer method; (c) size of the glass slit.

    图 2  T = 20 ℃时不同水相丙酮浓度下水-甲苯两相间的界面张力系数

    Fig. 2.  Interfacial tension coefficient between water and toluene phases under different acetone concentrations of aqueous phase with T = 20 ℃.

    图 3  T = 20 ℃时不同丙酮浓度的水相溶液的密度

    Fig. 3.  Density of aqueous solution with different acetone concentrations with T = 20 ℃.

    图 4  传质过程引起的密度分层示意图与实验结果 (a) 密度分层示意图; (b) 实验图像

    Fig. 4.  Schematic diagram and experimental result of density stratification caused by mass transfer: (a) Schematic diagram of density stratification; (b) experimental image.

    图 6  丘状“界面”的形成过程(水相丙酮初始体积浓度${\varphi _0} = 5\% $, 甲苯相丙酮初始体积浓度${\varphi _1} = 0\% $) (a) t = 13 s; (b) t = 30 s; (c) t = 36 s; (d) t = 42 s

    Fig. 6.  The forming process of the mound “interface” (the initial volume concentration of acetone in aqueous phase ${\varphi _0} = 5\% $, the initial volume concentration of acetone in the toluene phase ${\varphi _1} = 0\% $): (a) t = 13 s; (b) t = 30 s; (c) t = 36 s; (d) t = 42 s.

    图 5  密度分层引起的Rayleigh-Taylor不稳定性示意图 $\omega $是涡流, P是压力, $\rho $是密度, u是速度, g是重力加速度; 粗的环形箭头表示涡旋产生的速度场

    Fig. 5.  Schematic diagram of Rayleigh-Taylor instability caused by density stratification. $\omega $ is vorticity, P is pressure, $\rho $ is density, u is velocity and g is acceleration of gravity; the thick circular arrows represent the velocity field created by the vortex.

    图 7  羽状流的演变过程 (${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $) (a) t = 0 s; (b) t = 18 s; (c) t = 20 s; (d) t = 22 s

    Fig. 7.  The evolution of the plume flow (${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $): (a) t = 0 s; (b) t = 18 s; (c) t = 20 s; (d) t = 22 s.

    图 8  弱羽状流的演变过程(${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $) (a) t = 348 s; (b) t = 356 s; (c) t = 363 s; (d) t = 370 s

    Fig. 8.  The evolution of the weak plume flow (${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $): (a) t = 348 s; (b) t = 356 s; (c) t = 363 s; (d) t = 370 s.

    图 10  强羽状流的演变过程(${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $) (a) t = 22 s; (b) t = 23 s; (c) t = 26 s

    Fig. 10.  The evolution of the strong plume flow (${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $): (a) t = 22 s; (b) t = 23 s; (c) t = 26 s.

    图 9  羽状流的速度矢量及涡量云图(${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $)

    Fig. 9.  The velocity vector and vorticity contours of the plume flow (${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $).

    图 11  强羽状流向弱羽状流的演变过程(${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $) (a) t = 228 s; (b) t = 234 s; (c) t = 238 s; (d) t = 245 s

    Fig. 11.  The evolution of the strong plume flow to the weak plume flow (${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $): (a) t = 228 s; (b) t = 234 s; (c) t = 238 s; (d) t = 245 s.

    图 12  传质初期对流结构的聚并过程(${\varphi _0} \!=\! 30\% $, ${\varphi _1} \!=\! 0\% $)  (a) t = 15 s; (b) t = 20 s; (c) t = 24 s; (d) t = 30 s

    Fig. 12.  Convergence process of convective structure at the beginning of the mass transfer (${\varphi _0} = 30\% $, ${\varphi _1} = 0\% $): (a) t = 15 s; (b) t = 20 s; (c) t = 24 s; (d) t = 30 s.

    图 13  对流团的消失以及强羽状流的出现(${\varphi _0} = 30\% $, ${\varphi _1} = 0\% $)  (a) t = 101 s; (b) t = 196 s; (c) t = 259 s; (d) t = 350 s

    Fig. 13.  The disappearance of convective cloud and the appearance of the strong plume (${\varphi _0} = 30\% $, ${\varphi _1} = 0\% $): (a) t = 101 s; (b) t = 196 s; (c) t = 259 s; (d) t = 350 s.

    图 14  水相丙酮初始浓度对第一个RBM对流结构向下延伸速度的影响

    Fig. 14.  The influence of initial concentration of acetone in aqueous phase on the elongation velocity of the first RBM convective structure.

    图 15  水相丙酮初始浓度对羽状流数量的影响

    Fig. 15.  The influence of initial concentration of acetone in aqueous phase on the number of the plumes.

    图 16  水相丙酮初始浓度对水-甲苯界面形貌的影响 (a)界面粗糙度; (b)界面波动程度

    Fig. 16.  The influence of initial concentration of acetone in aqueous phase on water-toluene interface morphology: (a) Interfacial roughness; (b) the degree of interface fluctuation.

    图 17  不同甲苯相丙酮初始浓度下的投影图像(t = 35 s, ${\varphi _0} = 20\% $) (a) ${\varphi _1} = 5\% $; (b) ${\varphi _1} = 7.5\% $; (c) ${\varphi _1} = 10\% $; (d) ${\varphi _1} = 15\% $

    Fig. 17.  Schlieren images under different initial concentrations of acetone in the toluene phase (t = 35 s, ${\varphi _0} = 20\% $): (a) ${\varphi _1} = 5\% $ (b) ${\varphi _1} = 7.5\% $; (c) ${\varphi _1} = 10\% $; (d) ${\varphi _1} = 15\% $.

    图 18  甲苯相丙酮初始浓度对第一个RBM对流结构向下延伸速度的影响

    Fig. 18.  The influence of initial concentration of acetone in the toluene phase on the elongation velocity of the first RBM convective structure.

    图 19  甲苯相丙酮初始浓度对羽状流数量的影响

    Fig. 19.  The influence of initial concentration of acetone in the toluene phase on the number of the plumes.

    图 20  甲苯相丙酮初始浓度对水-甲苯界面形貌的影响 (a)界面粗糙度; (b)界面波动程度

    Fig. 20.  The influence of initial concentration of acetone in the toluene phase on water-toluene interface morphology: (a) Interfacial roughness; (b) the degree of interface fluctuation.

    图 21  甲苯层厚度对羽状流数量的影响

    Fig. 21.  The influence of thickness of toluene layer on the number of the plumes.

    图 22  甲苯层厚度对水-甲苯界面形貌的影响

    Fig. 22.  The influence of thickness of toluene layer on water - toluene interface morphology.

    表 1  实验试剂的物性参数(T = 20 ℃, P = 0.1 MPa)

    Table 1.  The physical parameters of experimental reagents (T = 20 ℃, P = 0.1 MPa).

    实验试剂ρ/kg·m–3µ/10–4Pa·s
    99810.04
    甲苯8675.86
    丙酮7903.26
    下载: 导出CSV
  • [1]

    Yao F, Chen Y P, Peterson G P 2013 Int. J. Heat Mass Transfer 64 418Google Scholar

    [2]

    Liu X D, Chen Y P, Shi M H 2013 Int. J. Therm. Sci. 65 224Google Scholar

    [3]

    Chen Y P, Cheng P 2005 Int. J. Heat Mass Transfer 32 931Google Scholar

    [4]

    Bodenschatz E, Pesch W, Ahlers G 2000 Annu. Rev. Fluid Mech. 32 709Google Scholar

    [5]

    王飞, 彭岚, 张全壮, 刘佳 2015 物理学报 64 140202Google Scholar

    Wang F, Peng L, Zhang Q Z, Liu J 2015 Acta Phys. Sin. 64 140202Google Scholar

    [6]

    翟薇, 王楠, 魏炳波 2007 物理学报 56 2353Google Scholar

    Zhai W, Wang N, Wei B B 2007 Acta Phys. Sin. 56 2353Google Scholar

    [7]

    Schwabe D 1999 Adv. Space Res. 24 1347Google Scholar

    [8]

    Touazi O, Chénier E, Doumenc F, Guerrier B 2010 Int. J. Heat Mass Transfer 53 656Google Scholar

    [9]

    Chen J, Yang C, Mao Z S 2015 Eur. Phys. J. Spec. Top. 224 389Google Scholar

    [10]

    Bo Z, Mao S, Han Z J, Cen K F, Chen J H, Kostya O 2015 Chem. Soc. Rev. 44 2018

    [11]

    张婷, 施保昌, 柴振华 2015 物理学报 64 254701

    Zhang T, Shi B C, Chai Z H 2015 Acta Phys. Sin. 64 254701

    [12]

    郑连存, 盛晓艳, 张欣欣 2006 物理学报 55 5298Google Scholar

    Zheng L C, Sheng X Y, Zhang X X 2006 Acta Phys. Sin. 55 5298Google Scholar

    [13]

    Kline J L, Hager J D 2016 Matter Radiat. Extremes 2 16

    [14]

    Dong S X, Han W, Liu M F, Zhang Z W, Li B, Ge L Q 2016 Colloids Surf. A 509 32Google Scholar

    [15]

    Bai L, Zhao S F, Fu Y H, Cheng Y 2016 Biochem. Eng. J. 298 281

    [16]

    Sun Z F 2012 Chem. Eng. Sci. 68 579Google Scholar

    [17]

    Liu C, Zeng A, Yuan X, Yu G 2008 Chem. Eng. Res. Des. 86 201Google Scholar

    [18]

    Alvarez-Herrera C, Moreno-Hernández D, Barrientos-García B, Guerrero-Viramontes J A 2005 Opt. Laser Technol. 41 233

    [19]

    Piekarska W, Kubiak M 2013 Appl. Math. Modell. 37 2051Google Scholar

    [20]

    Szymczyk J A 1991 Can. J. Chem. Eng. 69 1233

    [21]

    Okhotsimskii A, Hozawa M 1998 Chem. Eng. Sci. 53 2547Google Scholar

    [22]

    王勇, 张泽廷 2002 北京化工大学学报 29 11Google Scholar

    Wang Y, Zhang Z T 2002 J. Beijing Univ. Chem. Technol. 29 11Google Scholar

    [23]

    Sun Z F, Yu K T, S Y W, Miao Y Z 2002 Ind. Eng. Chem. Res. 41 1905Google Scholar

    [24]

    沙勇, 李樟云, 林芬芬, 吐芬, 肖宗源, 叶李艺 2010 化工学报 61 844

    Sha Y, Li Z Y, Lin F F, Tu F, Xiao Z Y, Ye L Y 2010 J. Chem. Ind. Eng. 61 844

    [25]

    Orell A, Westwater J W 1961 AlChE J. 8 350

    [26]

    Zhang S H, Wang Z M, Su Y F 1990 Chem. Eng. Res. Des. 68 84

    [27]

    Guzun-Stoica A, Kurzeluk M, Floarea O 2000 Chem. Eng. Sci. 55 3813Google Scholar

    [28]

    Kostarev K G, Shmyrov A V, Zuev A L, Viviani A 2011 Exp. Fluids 51 457Google Scholar

    [29]

    Chen Y, Cheng P 2005 Int. Commun. Heat Mass Transfer 32 175Google Scholar

    [30]

    Agble D, Mendes-Tatsis M A 2000 Int. J. Heat Mass Transfer 43 1025Google Scholar

    [31]

    Shi Y, Kerstin E 2007 Chin. J. Chem. Eng. 15 748Google Scholar

    [32]

    Chen Y P, Liu X D, Shi M H 2013 Appl. Phys. Lett. 102 051609Google Scholar

    [33]

    Chen Y P, Liu X D, Zhao Y J 2015 Appl. Phys. Lett. 106 141601Google Scholar

    [34]

    Chen Y P, Wu L Y, Zhang L 2015 Int. J. Heat Mass Transfer 82 42Google Scholar

    [35]

    Sharp D H 1984 Physica D 12 3Google Scholar

    [36]

    Roberts M S, Jacobs J W 2015 J. Fluid Mech. 787 50

    [37]

    胡楠, 张会书, 傅强, 李陆星, 袁希钢 2016 化工学报 68 584

    Hu L, Zhang H S, Fu Q, Li L X, Yuan X G 2016 J. Chem. Ind. Eng. 68 584

    [38]

    Puthenveettil B A, Arakeri J H 2005 J. Fluid Mech. 542 217Google Scholar

    [39]

    Yang C, Tartaglino U, Persson B N 2006 J. Phys. Rev. Lett. 97 11

  • [1] 唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋. 表面活性剂液滴过渡沸腾的Marangoni效应与二次液滴形成. 物理学报, 2023, 72(19): 196801. doi: 10.7498/aps.72.20230919
    [2] 李春曦, 程冉, 叶学民. 接触角迟滞和气-液界面张力温度敏感性对液滴蒸发动态特性的影响. 物理学报, 2021, 70(20): 204701. doi: 10.7498/aps.70.20210294
    [3] 赵文景, 王进, 秦威广, 纪文杰, 蓝鼎, 王育人. 基于Marangoni效应的液-液驱动铺展过程. 物理学报, 2021, 70(18): 184701. doi: 10.7498/aps.70.20210485
    [4] 宁利中, 张珂, 宁碧波, 刘爽, 田伟利. 倾斜Poiseuille-Rayleigh-Bénard流动的对流分区与动力学特性. 物理学报, 2020, 69(12): 124401. doi: 10.7498/aps.69.20191941
    [5] 李志宏, 丁召, 汤佳伟, 王一, 罗子江, 马明明, 黄延彬, 张振东, 郭祥. Ga液滴沉积速率对GaAs/GaAs (001)量子双环形貌的影响. 物理学报, 2019, 68(18): 183601. doi: 10.7498/aps.68.20190615
    [6] 尹灵康, 徐顺, Seongmin Jeong, Yongseok Jho, 王健君, 周昕. 广义等温等压系综-分子动力学模拟全原子水的气液共存形貌. 物理学报, 2017, 66(13): 136102. doi: 10.7498/aps.66.136102
    [7] 蔡继兴, 郭明, 渠旭, 李贺, 金光勇. 激光诱导等离子体的气体动力学和燃烧波扩展速度研究. 物理学报, 2017, 66(9): 094202. doi: 10.7498/aps.66.094202
    [8] 张义招, 包芸. 三维湍流Rayleigh-Bénard热对流的高效并行直接求解方法. 物理学报, 2015, 64(15): 154702. doi: 10.7498/aps.64.154702
    [9] 潘宵, 鞠焕鑫, 冯雪飞, 范其瑭, 王嘉兴, 杨耀文, 朱俊发. F8BT薄膜表面形貌及与Al形成界面的电子结构和反应. 物理学报, 2015, 64(7): 077304. doi: 10.7498/aps.64.077304
    [10] 王飞, 彭岚, 张全壮, 刘佳. 水平温差对环形浅液池内Marangoni-热毛细对流的影响. 物理学报, 2015, 64(14): 140202. doi: 10.7498/aps.64.140202
    [11] 宁利中, 王娜, 袁喆, 李开继, 王卓运. 分离比对混合流体Rayleigh-Bénard对流解的影响. 物理学报, 2014, 63(10): 104401. doi: 10.7498/aps.63.104401
    [12] 陈书赢, 王海斗, 徐滨士, 康嘉杰. 基于分形理论的超音速等离子喷涂层界面结合行为研究. 物理学报, 2014, 63(15): 156801. doi: 10.7498/aps.63.156801
    [13] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [14] 郑小青, 杨洋, 孙得彦. 模型二元有序合金固液界面结构的分子动力学研究. 物理学报, 2013, 62(1): 017101. doi: 10.7498/aps.62.017101
    [15] 张敏梁, 田煜, 蒋继乐, 孟永钢, 温诗铸. 极板形貌修饰对电流变液/极板界面滑移抑制实验研究. 物理学报, 2009, 58(12): 8394-8399. doi: 10.7498/aps.58.8394
    [16] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究. 物理学报, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [17] 金蔚青, 小松启. 固液界面温度的一种测量方法. 物理学报, 1985, 34(9): 1166-1172. doi: 10.7498/aps.34.1166
    [18] 陈式刚, 王友琴. Rayleigh-Bénard对流中的波长增长现象与最大熵产生判据. 物理学报, 1983, 32(2): 209-215. doi: 10.7498/aps.32.209
    [19] 涂相征. 稳定自然对流下的温度梯度液相外延. 物理学报, 1982, 31(1): 78-89. doi: 10.7498/aps.31.78
    [20] 检测超声组. 液面法超声全息成象技术. 物理学报, 1975, 24(1): 12-20. doi: 10.7498/aps.24.12
计量
  • 文章访问数:  8100
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-05
  • 修回日期:  2019-01-19
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回