搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

接触角迟滞和气-液界面张力温度敏感性对液滴蒸发动态特性的影响

李春曦 程冉 叶学民

引用本文:
Citation:

接触角迟滞和气-液界面张力温度敏感性对液滴蒸发动态特性的影响

李春曦, 程冉, 叶学民

Effect of contact angle hysteresis and sensitivity of gas-liquid interfacial tension to temperature of a sessile-drop on evaporation dynamics

Li Chun-Xi, Cheng Ran, Ye Xue-Min
PDF
HTML
导出引用
  • 基于润滑理论和滑移边界条件, 构建了考虑接触角迟滞时液滴在均匀加热固体壁面上蒸发的数学模型, 探讨了接触角迟滞对蒸发液滴动力学的影响, 并分析了不同气-液界面张力温度敏感性的液滴蒸发特征. 研究结果表明: 接触角迟滞对液滴蒸发过程有较大影响, 随接触角迟滞增大, 液滴的接触线钉扎时间延长, 铺展阶段和去钉扎阶段时长缩短, 液滴蒸发显著加快; 迟滞角的增大使前进接触角增加, 后退接触角减小, 且后退接触角减小的幅度大于前进接触角增加的幅度. 提高气-液界面张力对温度的敏感性系数可通过减小后退接触角, 改善液滴在壁面上的润湿性, 从而加强液滴传热, 致使加快液滴蒸干. 因此, 改变接触角迟滞和气-液界面张力对温度的敏感性均可实现对液滴运动的调控, 从而控制其蒸发进程.
    The evaporation process of drops on a solid surface is widely applied to daily life and industrial fields. Both contact angle hysteresis and the sensitivity of gas-liquid interfacial tension to temperature are important factors affecting the drop evaporation reflected in the contact line and contact angle. To investigate the internal mechanism, according to the lubrication theory and slip boundary conditions, we establish a mathematical model of the drop evaporation on a uniformly heated solid wall with considering the effect of contact angle hysteresis. This model is numerically solved by using a coordinate transformation method and Freefem++14.3, a highly efficient solver. The accuracy of the numerical calculation method is verified by comparing the numerical results with experimental results, and the grid independence is validated. The effect of contact angle hysteresis on the dynamics of evaporating drops is discussed, and the evaporation characteristics of drops with different tension sensitivities of the air-liquid interface to temperature are further investigated. The results show that the contact angle hysteresis has an apparent influence on the drop evaporation process which includes drop spreading stage, contact line pinning stage, and depinning stage. In the drop spreading stage, the increase in the hysteresis angle shortens the spreading time, and reduces the spreading velocity and radius, while in the contact line pinning stage, the pinning time is prolonged and the reduction of drop mass is significantly increased with hysteresis angle increasing. In the contact line depinning stage, the contact angle hysteresis reduces the contact angle, and a flatter shape emerges, thereby enhancing the ability to transfer heat and accelerating evaporation as well as shortening the depinning time. In addition, the large hysteresis angle leads to a large advancing contact angle and a small receding contact angle. The reduction in receding contact angle is more notable than the increment of advancing contact angle. The temperature sensitivity coefficient of the gas-liquid interfacial tension can be increased by reducing the receding contact angle, thereby improving the wettability of the drops on the wall enhancing the heat transfer and accelerating the evaporation. Regulating the contact angle hysteresis and the sensitivity of the interfacial tension to temperature can realize the manipulation of the drop movement, thus controlling the evaporation process.
      通信作者: 叶学民, yexuemin@163.com
    • 基金项目: 国家自然科学基金(批准号: 51876065)资助的课题
      Corresponding author: Ye Xue-Min, yexuemin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51876065)
    [1]

    Kavehpour P, Ovryn B, McKinley G H 2002 Colloids Surf., A 206 409Google Scholar

    [2]

    Lee K S, Ivanova N, Starov V M, Hilal N, Dutschk V 2008 Adv. Colloid Interface Sci. 144 54Google Scholar

    [3]

    Wijshoff H 2010 Phys. Rep. 491 77Google Scholar

    [4]

    Putnam S A, Briones A M, Byrd L W, Ervin J S, Hanchak M S, White A, Jones J G 2012 Int. J. Heat Mass Transfer 55 5793Google Scholar

    [5]

    Ye X M, Zhang X S, Li M L, Li C X 2018 Phys. Fluids 30 112103Google Scholar

    [6]

    Lopes M C, Bonaccurso E 2012 Soft Matter 8 7875Google Scholar

    [7]

    Kiper I, Fulcrand R, Pirat C, Simon G, Stutz B, Ramos S M M 2015 Colloids Surf., A 482 617Google Scholar

    [8]

    Eral H B, Mannetje D, Oh J M 2013 Colloid. Polym. Sci. 291 247Google Scholar

    [9]

    Neumann A W, Good R J 1972 J. Colloid Interface Sci. 38 341Google Scholar

    [10]

    Johnson R E, Dettre R H 1964 Contact Angle, Wettability, and Adhesion (Washington: American Chemical Society) pp112−135

    [11]

    Dettre R H, Johnson R E 1964 Contact Angle, Wettability, and Adhesion (Washington: American Chemical Society) pp136−144

    [12]

    Yu H Z, Soolaman D M, Rowe A W, Banks J T 2004 ChemPhysChem 5 1035Google Scholar

    [13]

    Li Y F, Sheng Y J, Tsao H K 2013 Langmuir 29 7802Google Scholar

    [14]

    Trybala A, Okoye A, Semenov S, Agogo H, Rubio R G, Ortega F, Starov V M 2013 J. Colloid Interface Sci. 403 49Google Scholar

    [15]

    Kulinich S A, Farzaneh M 2009 Appl. Surf. Sci. 255 4056Google Scholar

    [16]

    Lin T S, Zeng Y H, Tsay R Y, Lin S Y 2016 J. Taiwan Inst. Chem. Eng. 62 54Google Scholar

    [17]

    Kuznetsov G V, Feoktistov D V, Orlova E G, Batishcheva K A 2016 Colloid J. 78 335Google Scholar

    [18]

    Ajaev V S 2005 J. Fluid Mech. 528 279Google Scholar

    [19]

    Masoud H, Felske J D 2009 Phys. Rev. E 79 016301Google Scholar

    [20]

    Semenov S, Starov V M, Rubio R G, Agogo H, Velarde M G 2012 Math. Modell. Nat. Phenom. 7 82Google Scholar

    [21]

    Karapetsas G, Sahu K C, Matar O K 2013 Langmuir 29 8892Google Scholar

    [22]

    Ye X M, Zhang X S, Li M L, Li C X, Dong S 2019 Int. J. Heat Mass Transfer 128 1263Google Scholar

    [23]

    叶学民, 李永康, 李春曦 2016 物理学报 65 104704Google Scholar

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 104704Google Scholar

    [24]

    Karapetsas G, Craster R V, Matar O K 2011 J. Fluid Mech. 670 5Google Scholar

    [25]

    焦云龙, 刘小君, 逄明华, 刘焜 2015 物理学报 65 016801Google Scholar

    Jiao Y L, Liu X J, Pang M H, Liu K 2015 Acta Phys. Sin. 65 016801Google Scholar

    [26]

    Nagy M, Škvarla J 2013 Acta Montan. Slovaca 18 125

    [27]

    王晓东, 彭晓峰, 陆建峰, 王补宣 2003 应用基础与工程科学学报 11 174Google Scholar

    Wang X D, Peng X F, Wang B X 2003 Chin. J. Chem. Eng. 11 174Google Scholar

    [28]

    Smith M K 1995 J. Fluid Mech. 294 209Google Scholar

    [29]

    Craster R V, Matar O 2000 J. Fluid Mech. 425 235Google Scholar

    [30]

    Ma C, Liu J, Xie S, Liu Y 2020 Chem. Eng. Sci. 214 115418Google Scholar

    [31]

    Vasu B, Dubey A, Bég O A, Gorla R S R 2020 Comput. Biol. Med. 126 104025Google Scholar

    [32]

    Jiménez Bolaños S, Vernescu B 2017 Phys. Fluids 29 057103Google Scholar

    [33]

    朱仙仙, 闵春华, 郭宇虹, 王坤, 解立垚 2021 热科学与技术 20 28

    Zhu X X, Min C H, Guo Y H, Wang K, Xie L Y 2021 J. Therm. Sci. Tech. 20 28

    [34]

    Hu H, Larson R G 2005 Langmuir 21 3963Google Scholar

    [35]

    Gatapova E Y, Semenov A A, Zaitsev D V, Kabov O A 2014 Colloids Surf., A 441 776Google Scholar

    [36]

    Chu F, Wu X, Zhu Y, Yuan Z 2017 Int. J. Heat Mass Transfer 111 836Google Scholar

    [37]

    Bormashenko E, Musin A, Zinigrad M 2011 Colloids Surf., A 385 235Google Scholar

    [38]

    Brutin D, Sobac B (Brutin D Ed.) 2015 Droplet Wetting and Evaporation (Oxford: Academic Press) pp25−30

  • 图 1  液滴在加热表面铺展示意图

    Fig. 1.  Schematic of a drop disposed on a horizontally heated substrate.

    图 2  计算模型的验证 (a) 接触角的演化过程; (b) 接触线的演化过程; (c) 网格无关性验证

    Fig. 2.  Verification of the computational model: (a) Evolution of contact angle; (b) evolution of contact line; (c) validation of grid independence.

    图 3  不同Δθ时液滴演化过程中的特征参数变化 (a) 接触角; (b) 接触半径; (c) 接触线移动速度; (d) 蒸发剩余质量

    Fig. 3.  Characteristic parameters of drop evolution with time at different Δθ: (a) Dynamic contact angle; (b) contact line; (c) contact line velocity; (d) remaining mass.

    图 5  动态接触角与接触线移动速度关系图

    Fig. 5.  Relation between the dynamic contact angle and velocity of contact line.

    图 4  液滴演化过程轮廓图 (a) t = 10000; (b) t = 50000; (c) t = 70000; (d) t = 74000

    Fig. 4.  Drop profile during the drop evolution process: (a) t = 10000; (b) t = 50000; (c) t = 70000; (d) t = 74000.

    图 6  液滴演化过程中的特征参数变化 (a) 接触角; (b) 接触半径; (c) 接触线移动速度; (d) 蒸发剩余质量

    Fig. 6.  Characteristic parameters of drop evolution with time: (a) Dynamic contact angle; (b) contact line; (c) contact line velocity; (d) remaining mass.

    表 1  不同Δθ对液滴演化时间的影响

    Table 1.  Effect of varied Δθ on the drop evolution time.

    Δθ钉扎时刻去钉扎时刻蒸干时刻铺展阶段钉扎阶段去钉扎阶段
    0.271891039750780000—1891018910—3975039750—78000
    0.351653043250762000—1653016530—4325043250—76200
    0.401462045100746000—1462014620—4510045100—74600
    下载: 导出CSV

    表 2  不同迟滞角下θaθr 变化

    Table 2.  Variation in θa and θr of drop with different Δθs

    ΔθθaθrΔθaΔθr
    0.270.9660.6960.106–0.164
    0.350.9970.6470.031–0.049
    0.401.0160.6160.019–0.031
    下载: 导出CSV

    表 3  不同Ωlg时液滴演化过程中参数变化

    Table 3.  Varieties of parameters during drop evolution with different Ωlg.

    Ωlg钉扎时刻去钉扎时刻蒸干时刻θeθaθr
    0.0031891039750780000.8600.9660.686
    0.0052028040140767000.8370.9420.672
    0.012220040260710000.7750.8800.610
    下载: 导出CSV
  • [1]

    Kavehpour P, Ovryn B, McKinley G H 2002 Colloids Surf., A 206 409Google Scholar

    [2]

    Lee K S, Ivanova N, Starov V M, Hilal N, Dutschk V 2008 Adv. Colloid Interface Sci. 144 54Google Scholar

    [3]

    Wijshoff H 2010 Phys. Rep. 491 77Google Scholar

    [4]

    Putnam S A, Briones A M, Byrd L W, Ervin J S, Hanchak M S, White A, Jones J G 2012 Int. J. Heat Mass Transfer 55 5793Google Scholar

    [5]

    Ye X M, Zhang X S, Li M L, Li C X 2018 Phys. Fluids 30 112103Google Scholar

    [6]

    Lopes M C, Bonaccurso E 2012 Soft Matter 8 7875Google Scholar

    [7]

    Kiper I, Fulcrand R, Pirat C, Simon G, Stutz B, Ramos S M M 2015 Colloids Surf., A 482 617Google Scholar

    [8]

    Eral H B, Mannetje D, Oh J M 2013 Colloid. Polym. Sci. 291 247Google Scholar

    [9]

    Neumann A W, Good R J 1972 J. Colloid Interface Sci. 38 341Google Scholar

    [10]

    Johnson R E, Dettre R H 1964 Contact Angle, Wettability, and Adhesion (Washington: American Chemical Society) pp112−135

    [11]

    Dettre R H, Johnson R E 1964 Contact Angle, Wettability, and Adhesion (Washington: American Chemical Society) pp136−144

    [12]

    Yu H Z, Soolaman D M, Rowe A W, Banks J T 2004 ChemPhysChem 5 1035Google Scholar

    [13]

    Li Y F, Sheng Y J, Tsao H K 2013 Langmuir 29 7802Google Scholar

    [14]

    Trybala A, Okoye A, Semenov S, Agogo H, Rubio R G, Ortega F, Starov V M 2013 J. Colloid Interface Sci. 403 49Google Scholar

    [15]

    Kulinich S A, Farzaneh M 2009 Appl. Surf. Sci. 255 4056Google Scholar

    [16]

    Lin T S, Zeng Y H, Tsay R Y, Lin S Y 2016 J. Taiwan Inst. Chem. Eng. 62 54Google Scholar

    [17]

    Kuznetsov G V, Feoktistov D V, Orlova E G, Batishcheva K A 2016 Colloid J. 78 335Google Scholar

    [18]

    Ajaev V S 2005 J. Fluid Mech. 528 279Google Scholar

    [19]

    Masoud H, Felske J D 2009 Phys. Rev. E 79 016301Google Scholar

    [20]

    Semenov S, Starov V M, Rubio R G, Agogo H, Velarde M G 2012 Math. Modell. Nat. Phenom. 7 82Google Scholar

    [21]

    Karapetsas G, Sahu K C, Matar O K 2013 Langmuir 29 8892Google Scholar

    [22]

    Ye X M, Zhang X S, Li M L, Li C X, Dong S 2019 Int. J. Heat Mass Transfer 128 1263Google Scholar

    [23]

    叶学民, 李永康, 李春曦 2016 物理学报 65 104704Google Scholar

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 104704Google Scholar

    [24]

    Karapetsas G, Craster R V, Matar O K 2011 J. Fluid Mech. 670 5Google Scholar

    [25]

    焦云龙, 刘小君, 逄明华, 刘焜 2015 物理学报 65 016801Google Scholar

    Jiao Y L, Liu X J, Pang M H, Liu K 2015 Acta Phys. Sin. 65 016801Google Scholar

    [26]

    Nagy M, Škvarla J 2013 Acta Montan. Slovaca 18 125

    [27]

    王晓东, 彭晓峰, 陆建峰, 王补宣 2003 应用基础与工程科学学报 11 174Google Scholar

    Wang X D, Peng X F, Wang B X 2003 Chin. J. Chem. Eng. 11 174Google Scholar

    [28]

    Smith M K 1995 J. Fluid Mech. 294 209Google Scholar

    [29]

    Craster R V, Matar O 2000 J. Fluid Mech. 425 235Google Scholar

    [30]

    Ma C, Liu J, Xie S, Liu Y 2020 Chem. Eng. Sci. 214 115418Google Scholar

    [31]

    Vasu B, Dubey A, Bég O A, Gorla R S R 2020 Comput. Biol. Med. 126 104025Google Scholar

    [32]

    Jiménez Bolaños S, Vernescu B 2017 Phys. Fluids 29 057103Google Scholar

    [33]

    朱仙仙, 闵春华, 郭宇虹, 王坤, 解立垚 2021 热科学与技术 20 28

    Zhu X X, Min C H, Guo Y H, Wang K, Xie L Y 2021 J. Therm. Sci. Tech. 20 28

    [34]

    Hu H, Larson R G 2005 Langmuir 21 3963Google Scholar

    [35]

    Gatapova E Y, Semenov A A, Zaitsev D V, Kabov O A 2014 Colloids Surf., A 441 776Google Scholar

    [36]

    Chu F, Wu X, Zhu Y, Yuan Z 2017 Int. J. Heat Mass Transfer 111 836Google Scholar

    [37]

    Bormashenko E, Musin A, Zinigrad M 2011 Colloids Surf., A 385 235Google Scholar

    [38]

    Brutin D, Sobac B (Brutin D Ed.) 2015 Droplet Wetting and Evaporation (Oxford: Academic Press) pp25−30

  • [1] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析. 物理学报, 2022, 71(3): 030501. doi: 10.7498/aps.71.20211549
    [2] 刘春杰, 赵新军, 高志福, 蒋中英. 高分子混合刷吸附/脱附蛋白质的模型化研究. 物理学报, 2021, 70(22): 224701. doi: 10.7498/aps.70.20211219
    [3] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211549
    [4] 徐珂, 许龙, 周光平. 考虑水蒸气蒸发和冷凝的球状泡群中泡的动力学特性. 物理学报, 2021, 70(19): 194301. doi: 10.7498/aps.70.20210045
    [5] 宁利中, 张珂, 宁碧波, 刘爽, 田伟利. 倾斜Poiseuille-Rayleigh-Bénard流动的对流分区与动力学特性. 物理学报, 2020, 69(12): 124401. doi: 10.7498/aps.69.20191941
    [6] 肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统. 物理学报, 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761
    [7] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性. 物理学报, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [8] 包涵, 包伯成, 林毅, 王将, 武花干. 忆阻自激振荡系统的隐藏吸引子及其动力学特性. 物理学报, 2016, 65(18): 180501. doi: 10.7498/aps.65.180501
    [9] 吴赛, 李伟斌, 石峰, 蒋世春, 蓝鼎, 王育人. 受限胶体液滴蒸发过程中胶体颗粒沉积过程观察. 物理学报, 2015, 64(9): 096101. doi: 10.7498/aps.64.096101
    [10] 王小发, 李骏. 短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性研究. 物理学报, 2014, 63(1): 014203. doi: 10.7498/aps.63.014203
    [11] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [12] 蒋树庆, 甯家敏, 陈法新, 叶繁, 薛飞彪, 李林波, 杨建伦, 陈进川, 周林, 秦义, 李正宏, 徐荣昆, 许泽平. Z箍缩动态黑腔动力学及辐射特性初步实验研究. 物理学报, 2013, 62(15): 155203. doi: 10.7498/aps.62.155203
    [13] 李洪伟, 周云龙, 刘旭, 孙斌. 基于随机子空间结合稳定图的气液两相流型分析. 物理学报, 2012, 61(3): 030508. doi: 10.7498/aps.61.030508
    [14] 黄丽莲, 辛方, 王霖郁. 新分数阶超混沌系统的研究与控制及其电路实现. 物理学报, 2011, 60(1): 010505. doi: 10.7498/aps.60.010505
    [15] 吴渝, 杨晶晶, 王利. Swarm模型突现行为的动力学特性分析. 物理学报, 2011, 60(10): 108902. doi: 10.7498/aps.60.108902
    [16] 和兴锁, 李雪华, 邓峰岩. 平面柔性梁的刚-柔耦合动力学特性分析与仿真. 物理学报, 2011, 60(2): 024502. doi: 10.7498/aps.60.024502
    [17] 包伯成, 周国华, 许建平, 刘中. 斜坡补偿电流模式控制开关变换器的动力学建模与分析. 物理学报, 2010, 59(6): 3769-3777. doi: 10.7498/aps.59.3769
    [18] 蒋飞, 刘中, 胡文, 包伯成. 连续混沌调频信号的动力学设计与分析. 物理学报, 2010, 59(1): 116-122. doi: 10.7498/aps.59.116
    [19] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析. 物理学报, 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [20] 蔡国梁, 谭振梅, 周维怀, 涂文桃. 一个新的混沌系统的动力学分析及混沌控制. 物理学报, 2007, 56(11): 6230-6237. doi: 10.7498/aps.56.6230
计量
  • 文章访问数:  7411
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 修回日期:  2021-05-16
  • 上网日期:  2021-09-30
  • 刊出日期:  2021-10-20

/

返回文章
返回