搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离散忆阻混沌系统的Simulink建模及其动力学特性分析

扶龙香 贺少波 王会海 孙克辉

引用本文:
Citation:

离散忆阻混沌系统的Simulink建模及其动力学特性分析

扶龙香, 贺少波, 王会海, 孙克辉

Simulink modeling and dynamic characteristics of discrete memristor chaotic system

Fu Long-Xiang, He Shao-Bo, Wang Hui-Hai, Sun Ke-Hui
PDF
HTML
导出引用
  • 为拓广离散忆阻器的研究与应用, 基于差分算子, 构建了具有平方非线性的离散忆阻模型, 并实现了Simulink仿真. 仿真结果表明, 设计的忆阻器满足广义忆阻定义. 将得到的离散忆阻引入三维混沌映射中, 设计了一种新型四维忆阻混沌映射, 并建立了该混沌映射的Simulink模型. 通过平衡点、分岔图、Lyapunov指数谱、复杂度、多稳态分析了系统复杂动力学特性. 本文从系统建模角度出发, 构建离散忆阻与离散忆阻混沌映射, 进一步验证了离散忆阻的可实现性, 为离散忆阻应用研究奠定了基础.
    In the last two years, the discrete memristor has been proposed, and it is in the early stages of research. Now, it is particularly important to use various simulation softwares to expand the applications of the discrete memristor model. Based on the difference operator, in this paper, a discrete memristor model with quadratic nonlinearity is constructed. The addition, subtraction, multiplication and division of the discrete memristor mathematical model are clarified, and the charge q is obtained by combining the discrete-time summation module, thereby realizing the Simulink simulation of the discrete memristor. The simulation results show that the designed memristor meets the three fingerprints of memristor, indicating that the designed discrete memristor belongs to generalized memristor.Using memristors to construct chaotic systems is one of the current research hotspots, but most of the literature is about the introduction of continuous memristors into continuous chaotic systems. In this paper, the obtained discrete memristor is introduced into a three-dimensional chaotic map which is mentioned in a Sprott’s book titled as Chaos and Time-Series Analysis, and a new four-dimensional memristor chaotic map is designed. Meanwhile, the Simulink model of the chaotic map is established. It is found that attractors with different sizes and shapes can be observed by changing the parameters in the Simulink model, indicating that the changes of system parameters and memristor parameters can change the dynamic behavior of the system. The analyses of equilibria and equilibrium stability show that the four-dimensional chaotic map has infinite equilibrium points. The Lyapunov exponent spectra and bifurcation diagrams of the circuit imply that the map can transform between weak chaotic state, chaotic state, and hyperchaotic state. Meanwhile, the multistability and coexisting attractors are analyzed under different initial conditions. Moreover, by comparing the results of measuring the complexity, it is found that the chaotic map with discrete memristor has richer dynamical behaviors and higher complexity than the original map.From the perspective of system modeling, in this paper the discrete memristor modeling and discrete memristor map designing are discussed based on the Matlab/Simulink. It further verifies the realizability and lays a foundation for the future applications of discrete memristor.
      通信作者: 贺少波, heshaobo@csu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61901530, 62071496, 62061008)和湖南省自然科学基金青年基金(批准号: 2020JJ5767)资助的课题
      Corresponding author: He Shao-Bo, heshaobo@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61901530, 62071496, 62061008) and the Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ5767).
    [1]

    Chua L O 1971 IEEE Trans. Circuit. Theory 18 507Google Scholar

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [3]

    Haj-Ali A, Ben-Hur R, Wald N, Ronen R, Kvatinsky S 2018 IEEE Micro. 38 13Google Scholar

    [4]

    Zhang Y, Shen Y, Wang X P, Cao L 2015 IEEE Trans. Circuits Syst. I 62 1402Google Scholar

    [5]

    Ho P W C, Almurib H A F, Kumar T N 2016 J. Semicond. 37 104002Google Scholar

    [6]

    Teimoori M, Amirsoleimani A, Ahmadi A, Ahmadi M 2018 IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26 2608Google Scholar

    [7]

    Wang C H, Xiong L, Sun J R, Yao W 2019 Nonlinear Dyn. 95 2893Google Scholar

    [8]

    Duan S K, Hu X F, Dong Z K, Wang L, Mazumder P 2015 IEEE Trans. Neural. Netw. Learn Syst. 26 1202Google Scholar

    [9]

    Marco M D, Forti M, Pancioni L, Innocenti G, Tesi A 2020 IEEE Trans. Syst. Man. Cybern. DOI: 10.1109/TCYB.2020. 2997686

    [10]

    Pham V T, Jafari S, Vaidyanathan S, Volos C, Wang X 2016 Sci. China:Technol. Sci. 59 358Google Scholar

    [11]

    Xu Q, Song Z, Bao H, Chen M, Bao B C 2018 Int. J. Electron. Commun. 96 66Google Scholar

    [12]

    Pershin Y V, Di Ventra M 2010 IEEE Trans. Circuits Syst. 57 1857Google Scholar

    [13]

    Biolek D, Di Ventra M, Pershin Y V 2013 Radioengineering 22 945

    [14]

    Gergel-Hackett N, Wright A, Fullerton F A, Joe A 2021 J. Circuits Syst. Comput. 30 2120002Google Scholar

    [15]

    段飞腾, 崔宝同 2015 固体电子学研究与进展 35 231

    Duan F T, Cui B T 2015 Res. Prog. Solid State Elec. Tron. 35 231

    [16]

    胡柏林, 王丽丹, 黄艺文, 胡小方, 张宇阳, 段书凯 2011 西南大学学报 33 50Google Scholar

    Hu B L, Wang L D, Huang Y W, Hu X F, Zhang Y Y, Duan S K 2011 J. Southwest Univ. 33 50Google Scholar

    [17]

    王晓媛, 俞军, 王光义 2018 物理学报 67 098501Google Scholar

    Wang X Y, Yu J, Wang G Y 2018 Acta Phys. Sin. 67 098501Google Scholar

    [18]

    王春华, 蔺海荣, 孙晶茹, 周玲, 周超, 邓全利 2020 电子与信息学报 42 795Google Scholar

    Wang C H, Lin H R, Sun J R, Zhou L, Zhou C, Deng Q L 2020 J. Electr. Inf Technol. 42 795Google Scholar

    [19]

    Fitch A L, Yu D S, Iu H H C, Sreeram V 2012 Int. J. Bifurcat. Chaos 22 1250133Google Scholar

    [20]

    Bao H, Jiang T, Chu K B, Chen M, Xu Q, Bao B C 2018 Complexity 2018 1Google Scholar

    [21]

    Buscarino A, Fortuna L, Frasca M, Gambuzza L V 2012 Chaos 22 023136Google Scholar

    [22]

    Li Q D, Zeng H Z, Li J 2015 Nonlinear Dyn. 79 2295Google Scholar

    [23]

    Ma J, Chen Z Q, Wang Z L, Zhang Q 2015 Nonlinear Dyn. 81 1275Google Scholar

    [24]

    Zhou L, Wang C H, Zhou L L 2017 Bifurcat. Chaos 27 1750027Google Scholar

    [25]

    阮静雅, 孙克辉, 牟俊 2016 物理学报 65 190502Google Scholar

    Ruan J Y, Sun K H, Mou J 2016 Acta Phys. Sin. 65 190502Google Scholar

    [26]

    Bao B C, Jiang T, Xu Q, Chen M, Wu H G, Hu Y H 2016 Nonlinear Dyn. 86 1711Google Scholar

    [27]

    Teng L, Iu H H C, Wang X Y, Wang X K 2014 Nonlinear Dyn. 77 231Google Scholar

    [28]

    Cang S J, Wu A G, Wang Z G, Xue W, Chen Z Q 2016 Nonlinear Dyn. 83 1987Google Scholar

    [29]

    He S B, Sun K H, Peng Y X, Wang L 2020 AIP Adv. 10 015332Google Scholar

    [30]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510Google Scholar

    [31]

    Adhikari S P, Sah M P, Kim H, Chua L O 2013 Trans. Circuits Syst. I, Reg. 60 3008Google Scholar

    [32]

    Sprott J C 2003 Chaos and Time-Series Analysis (Oxford: Oxford University Press) pp46–102

    [33]

    Peng Y X, Sun K H, He S B 2020 Chaos Solitons Fract. 137 109873Google Scholar

    [34]

    Chen W T, Zhuang J, Yu W X, Wang Z Z 2009 Med. Eng. Phys. 31 61Google Scholar

    [35]

    Yuan F, Wang G Y, Wang X W 2016 Chaos 26 507Google Scholar

  • 图 1  离散忆阻Simulink模型

    Fig. 1.  Discrete memristor Simulink model.

    图 2  离散忆阻器的电流-电压特性曲线 (a)电流-电压特性曲线; (b) 幅值变化; (c) 频率变化

    Fig. 2.  Current-voltage characteristic curves of discrete memristor: (a) Current-voltage characteristic curve; (b) amplitude change; (c) frequency change.

    图 3  三维Lorenz混沌映射(6)系统框图

    Fig. 3.  Structure diagram of the three-dimensional Lorenz chaotic map (6).

    图 4  加入忆阻器后的三维混沌映射(7)系统框图

    Fig. 4.  Structure diagram of the three-dimensional chaotic map with memristor (7).

    图 5  四维忆阻混沌映射(9)系统框图

    Fig. 5.  Structure diagram of the four-dimensional memristor chaotic map (9).

    图 6  四维忆阻混沌映射(9) Simulink模型

    Fig. 6.  Simulink model of thefour-dimensional memristor chaotic map (9).

    图 7  四维忆阻混沌映射(9)的Simulink仿真吸引子图 (a) β = –0.1, 超混沌状态; (b) β = –0.02, 超混沌状态; (c) β = –0.000002, 混沌状态; (d) a = 0.25, 混沌状态; (e) a = 0.5, 混沌状态; (f) a = 0.9, 混沌状态

    Fig. 7.  Simulink simulation results of the four-dimensional memristor chaotic map (9): (a) β = –0.1, hyperchaotic; (b) β = –0.02, hyperchaotic; (c) β = –0.000002, chaos; (d) a = 0.25, chaos; (e) a = 0.5, chaos; (f) a = 0.9, chaos.

    图 8  四维忆阻混沌映射(9)的Simulink仿真吸引子图对应Lyapunov指数谱 (a) β = –0.1, 超混沌状态; (b) β = –0.02, 超混沌状态; (c) β = –0.000002, 混沌状态; (d) a = 0.25, 混沌状态; (e) a = 0.5, 混沌状态; (f) a = 0.9, 混沌状态

    Fig. 8.  Simulink simulation attractor diagram of the four-dimensional memristor chaotic map (9) corresponds to Lyapunov Exponent spectra: (a) β = –0.1, hyperchaotic; (b) β = –0.02, hyperchaotic; (c) β = –0.000002, chaos; (d) a = 0.25, chaos; (e) a = 0.5, chaos; (f) a = 0.9, chaos.

    图 9  四维忆阻混沌映射(9)分岔图与Lyapunov指数谱 (a) 分岔图; (b) Lyapunov指数谱

    Fig. 9.  Bifurcation and Lyapunov exponent spectra of the four-dimensional memristor chaotic map (9): (a) Bifurcation diagram; (b) Lyapunov exponent (LE) spectra.

    图 10  弱混沌系统动力学分析 (a) xn序列图; (b) Lyapunov指数谱

    Fig. 10.  Dynamic analysis of weakly chaotic system: (a) xn sequence diagram; (b) Lyapunov exponent spectra.

    图 11  随初值z0变化的Lyapunov指数谱 (a)四维忆阻混沌映射(9), a = 0.25; (b) 四维忆阻混沌映射(9), a = 0.5; (c) 三维Lorenz混沌映射(6)

    Fig. 11.  Lyapunov exponent spectra with initial value z0: (a) Four-dimensional memristor chaotic map (9), a = 0.5; (b) four-dimensional memristor chaotic map (9), a = 0.5; (c) three-dimensional Lorenz chaotic map (6).

    图 12  四维忆阻混沌映射(9)样本熵复杂度

    Fig. 12.  Sample entropy (SampEn) complexity of the four-dimensional memristor chaotic map (9).

    图 13  xn-yn平面上共存吸引子 (a) 初值y0 = 1, 0.5, 0.25; (b) 初值z0 = 1, 0.5, 0.25; (c) 初值w0 = 1, 0.5, 0.25

    Fig. 13.  Coexisting attractors in the xn-yn plane: (a) y0 = 1, 0.5, 0.25; (b) z0 = 1, 0.5, 0.25; (c) w0 = 1, 0.5, 0.25

    图 14  随初值变化的分岔图 (a) 初值y0变化, x0 = 0.5, z0 = 0.5, w0 = 0.4; (b)初值z0变化, x0 = 0.5, y0 = 0.5, w0 = 0.4; (c) 初值w0变化, x0 = 0.5, y0 = 0.5, z0 = 0.5

    Fig. 14.  Bifurcation diagrams with the initial values: (a) Initial value y0 changes, x0 = 0.5, z0= 0.5, w0 = 0.4; (b) initial value z0 changes, x0 = 0.5, y0 = 0.5, w0 = 0.4; (c) initial value w0 changes, x0 = 0.5, y0 = 0.5, z0 = 0.5.

    图 15  初值平面上吸引盆 (a) a = 0.25; (b) a = 0.5; (c) a = 0.9

    Fig. 15.  Attraction basins in the planes constructed by two different initial conditions: (a) a = 0.25; (b) a = 0.5; (c) a = 0.9.

    图 16  在不同参数a下随初值z0变化的样本熵复杂度 (a) a = 0.25; (b) a = 0.5; (c) a = 0.9

    Fig. 16.  Sample entropy complexity with initial value z0 under different system parameter a: (a) a = 0.25; (b) a = 0.5; (c) a = 0.9.

    图 17  三维Lorenz混沌映射(6)样本熵复杂度

    Fig. 17.  Sample entropy complexity of the three-dimensional Lorenz chaotic map (6).

  • [1]

    Chua L O 1971 IEEE Trans. Circuit. Theory 18 507Google Scholar

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [3]

    Haj-Ali A, Ben-Hur R, Wald N, Ronen R, Kvatinsky S 2018 IEEE Micro. 38 13Google Scholar

    [4]

    Zhang Y, Shen Y, Wang X P, Cao L 2015 IEEE Trans. Circuits Syst. I 62 1402Google Scholar

    [5]

    Ho P W C, Almurib H A F, Kumar T N 2016 J. Semicond. 37 104002Google Scholar

    [6]

    Teimoori M, Amirsoleimani A, Ahmadi A, Ahmadi M 2018 IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26 2608Google Scholar

    [7]

    Wang C H, Xiong L, Sun J R, Yao W 2019 Nonlinear Dyn. 95 2893Google Scholar

    [8]

    Duan S K, Hu X F, Dong Z K, Wang L, Mazumder P 2015 IEEE Trans. Neural. Netw. Learn Syst. 26 1202Google Scholar

    [9]

    Marco M D, Forti M, Pancioni L, Innocenti G, Tesi A 2020 IEEE Trans. Syst. Man. Cybern. DOI: 10.1109/TCYB.2020. 2997686

    [10]

    Pham V T, Jafari S, Vaidyanathan S, Volos C, Wang X 2016 Sci. China:Technol. Sci. 59 358Google Scholar

    [11]

    Xu Q, Song Z, Bao H, Chen M, Bao B C 2018 Int. J. Electron. Commun. 96 66Google Scholar

    [12]

    Pershin Y V, Di Ventra M 2010 IEEE Trans. Circuits Syst. 57 1857Google Scholar

    [13]

    Biolek D, Di Ventra M, Pershin Y V 2013 Radioengineering 22 945

    [14]

    Gergel-Hackett N, Wright A, Fullerton F A, Joe A 2021 J. Circuits Syst. Comput. 30 2120002Google Scholar

    [15]

    段飞腾, 崔宝同 2015 固体电子学研究与进展 35 231

    Duan F T, Cui B T 2015 Res. Prog. Solid State Elec. Tron. 35 231

    [16]

    胡柏林, 王丽丹, 黄艺文, 胡小方, 张宇阳, 段书凯 2011 西南大学学报 33 50Google Scholar

    Hu B L, Wang L D, Huang Y W, Hu X F, Zhang Y Y, Duan S K 2011 J. Southwest Univ. 33 50Google Scholar

    [17]

    王晓媛, 俞军, 王光义 2018 物理学报 67 098501Google Scholar

    Wang X Y, Yu J, Wang G Y 2018 Acta Phys. Sin. 67 098501Google Scholar

    [18]

    王春华, 蔺海荣, 孙晶茹, 周玲, 周超, 邓全利 2020 电子与信息学报 42 795Google Scholar

    Wang C H, Lin H R, Sun J R, Zhou L, Zhou C, Deng Q L 2020 J. Electr. Inf Technol. 42 795Google Scholar

    [19]

    Fitch A L, Yu D S, Iu H H C, Sreeram V 2012 Int. J. Bifurcat. Chaos 22 1250133Google Scholar

    [20]

    Bao H, Jiang T, Chu K B, Chen M, Xu Q, Bao B C 2018 Complexity 2018 1Google Scholar

    [21]

    Buscarino A, Fortuna L, Frasca M, Gambuzza L V 2012 Chaos 22 023136Google Scholar

    [22]

    Li Q D, Zeng H Z, Li J 2015 Nonlinear Dyn. 79 2295Google Scholar

    [23]

    Ma J, Chen Z Q, Wang Z L, Zhang Q 2015 Nonlinear Dyn. 81 1275Google Scholar

    [24]

    Zhou L, Wang C H, Zhou L L 2017 Bifurcat. Chaos 27 1750027Google Scholar

    [25]

    阮静雅, 孙克辉, 牟俊 2016 物理学报 65 190502Google Scholar

    Ruan J Y, Sun K H, Mou J 2016 Acta Phys. Sin. 65 190502Google Scholar

    [26]

    Bao B C, Jiang T, Xu Q, Chen M, Wu H G, Hu Y H 2016 Nonlinear Dyn. 86 1711Google Scholar

    [27]

    Teng L, Iu H H C, Wang X Y, Wang X K 2014 Nonlinear Dyn. 77 231Google Scholar

    [28]

    Cang S J, Wu A G, Wang Z G, Xue W, Chen Z Q 2016 Nonlinear Dyn. 83 1987Google Scholar

    [29]

    He S B, Sun K H, Peng Y X, Wang L 2020 AIP Adv. 10 015332Google Scholar

    [30]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510Google Scholar

    [31]

    Adhikari S P, Sah M P, Kim H, Chua L O 2013 Trans. Circuits Syst. I, Reg. 60 3008Google Scholar

    [32]

    Sprott J C 2003 Chaos and Time-Series Analysis (Oxford: Oxford University Press) pp46–102

    [33]

    Peng Y X, Sun K H, He S B 2020 Chaos Solitons Fract. 137 109873Google Scholar

    [34]

    Chen W T, Zhuang J, Yu W X, Wang Z Z 2009 Med. Eng. Phys. 31 61Google Scholar

    [35]

    Yuan F, Wang G Y, Wang X W 2016 Chaos 26 507Google Scholar

  • [1] 秦铭宏, 赖强, 吴永红. 具有无穷共存吸引子的简单忆阻混沌系统的分析与实现. 物理学报, 2022, 71(16): 160502. doi: 10.7498/aps.71.20220593
    [2] 徐珂, 许龙, 周光平. 考虑水蒸气蒸发和冷凝的球状泡群中泡的动力学特性. 物理学报, 2021, 70(19): 194301. doi: 10.7498/aps.70.20210045
    [3] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211549
    [4] 宁利中, 张珂, 宁碧波, 刘爽, 田伟利. 倾斜Poiseuille-Rayleigh-Bénard流动的对流分区与动力学特性. 物理学报, 2020, 69(12): 124401. doi: 10.7498/aps.69.20191941
    [5] 肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统. 物理学报, 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761
    [6] 王晓媛, 俞军, 王光义. 忆阻器、忆容器和忆感器的Simulink建模及其特性分析. 物理学报, 2018, 67(9): 098501. doi: 10.7498/aps.67.20172674
    [7] 包涵, 包伯成, 林毅, 王将, 武花干. 忆阻自激振荡系统的隐藏吸引子及其动力学特性. 物理学报, 2016, 65(18): 180501. doi: 10.7498/aps.65.180501
    [8] 舒剑. 基于扩展混沌映射的认证密钥协商协议. 物理学报, 2014, 63(5): 050507. doi: 10.7498/aps.63.050507
    [9] 王小发, 李骏. 短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性研究. 物理学报, 2014, 63(1): 014203. doi: 10.7498/aps.63.014203
    [10] 蒋树庆, 甯家敏, 陈法新, 叶繁, 薛飞彪, 李林波, 杨建伦, 陈进川, 周林, 秦义, 李正宏, 徐荣昆, 许泽平. Z箍缩动态黑腔动力学及辐射特性初步实验研究. 物理学报, 2013, 62(15): 155203. doi: 10.7498/aps.62.155203
    [11] 陈铁明, 蒋融融. 混沌映射和神经网络互扰的新型复合流密码. 物理学报, 2013, 62(4): 040301. doi: 10.7498/aps.62.040301
    [12] 何婷婷, 罗晓曙, 廖志贤, 韦正丛. 一种新的混沌映射散列函数构造方法及应用. 物理学报, 2012, 61(11): 110506. doi: 10.7498/aps.61.110506
    [13] 吴渝, 杨晶晶, 王利. Swarm模型突现行为的动力学特性分析. 物理学报, 2011, 60(10): 108902. doi: 10.7498/aps.60.108902
    [14] 和兴锁, 李雪华, 邓峰岩. 平面柔性梁的刚-柔耦合动力学特性分析与仿真. 物理学报, 2011, 60(2): 024502. doi: 10.7498/aps.60.024502
    [15] 黄丽莲, 辛方, 王霖郁. 新分数阶超混沌系统的研究与控制及其电路实现. 物理学报, 2011, 60(1): 010505. doi: 10.7498/aps.60.010505
    [16] 包伯成, 周国华, 许建平, 刘中. 斜坡补偿电流模式控制开关变换器的动力学建模与分析. 物理学报, 2010, 59(6): 3769-3777. doi: 10.7498/aps.59.3769
    [17] 蒋飞, 刘中, 胡文, 包伯成. 连续混沌调频信号的动力学设计与分析. 物理学报, 2010, 59(1): 116-122. doi: 10.7498/aps.59.116
    [18] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析. 物理学报, 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [19] 蔡国梁, 谭振梅, 周维怀, 涂文桃. 一个新的混沌系统的动力学分析及混沌控制. 物理学报, 2007, 56(11): 6230-6237. doi: 10.7498/aps.56.6230
    [20] 彭 飞, 丘水生, 龙 敏. 基于二维超混沌映射的单向Hash函数构造. 物理学报, 2005, 54(10): 4562-4568. doi: 10.7498/aps.54.4562
计量
  • 文章访问数:  7055
  • PDF下载量:  279
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-22
  • 修回日期:  2021-10-01
  • 上网日期:  2022-01-23
  • 刊出日期:  2022-02-05

/

返回文章
返回